Spatiotemporal dynamics of multimode optical solitons

Spatiotemporal dynamics of multimode optical solitons

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise. “Spatiotemporal dynamics of multimode optical solitons”. Opt. Express 22, 3492-3506 (2015).

We launch pulses into multimode fiber, exciting multiple spatial modes. We show how nonlinear interactions between the modes give rise to a multimode soliton. A multimode soliton is a non-dispersing wavepacket that contains several distinct spatial mode components, and propagates through the fiber without changing its shape due to a balance between nonlinear and linear effects. We observe spatiotemporal soliton fission – the disintegration of an optical pulse into distinct multimode soliton components with different spatiotemporal properties. Lastly, we observe the effect of stimulated Raman scattering on multimode solitons. This causes them to shift to longer wavelengths, while maintaining their multimode soliton characteristics.

ststmms
Multimode fiber acts as an intermediate-dimensional system. As the size of the fiber becomes infinite, optical dynamics are (3+1)-D (space+time). Meanwhile, as the fiber becomes small it becomes single mode, so that optical dynamics can be described using only (1+1) dimensions. Analytically, stable spatiotemporal solitons are expected for some region (blue) between 1 and 3 spatial dimensions. It is in this regime that multimode solitons are expected.

Leave a Reply

Your email address will not be published.