Gallery Archives

Henry_MMMamyshev

Multimode Mamyshev oscillator

Henry Haig, Pavel Sidorenko, Anirban Dhar, Nilotpal Choudhury, Ranjan Sen, Demetrios Christodoulides, and Frank Wise, “Multimode Mamyshev oscillator,” Opt. Lett. 47, 46-49 (2022)

Regular mode-locked lasers make short light pulses by synchronization or “locking” of many longitudinal cavity modes. It was recently shown that the transverse modes of a cavity can also be synchronized in a similar— but more general— form of mode-locking known as “spatiotemporal mode-locking” (STML). These lasers make ultrafast pulses that have spatial structure due to the many transverse modes involved. Understanding of this phenomenally complex phenomenon is limited: STML has so far been demonstrated a handful of times in relatively similar types of multimode fiber lasers. In this project, we study STML in a very different type of cavity architecture— the Mamyshev oscillator. The laser supports a vast array of mode-locked states. Learning to control these states in a meaningful way is a long-term goal which might enable gigawatt-class fiber lasers, or fiber lasers that generate purposefully-structured light for applications.

Henry_AllFiberMamyshev

Megawatt pulses from an all-fiber and self-starting femtosecond oscillator

Henry Haig, Pavel Sidorenko, Robert Thorne, and Frank Wise, “Megawatt pulses from an all-fiber and self-starting femtosecond oscillator,” Opt. Lett. 47, 762-765 (2022)

Mamyshev Oscillators are a relatively new type of fiber laser with extraordinary pulse performance— these lasers generate the highest peak-power pulses from femtosecond fiber lasers by over a factor of 10. Mamyshev oscillators should be excellent tools for applications like microscopy and micromachining, but there’s a catch: most Mamyshev oscillators are impractical for applications outside laser labs since they need another mode-locked laser to start and are relatively complicated and expensive. In this project we designed a Mamyshev oscillator that solves these practical problems and comes in a totally fiber-integrated, ready-for-applications format. The laser generates pulses on par with those from much more complex Mamyshev oscillators, and remarkably starts with some simple electronics rather than an additional mode-locked laser. The pulse energy (80 nJ) and duration (40 fs) advances the state-of-the-art for all-fiber, self-starting lasers by 20x, and should be scalable by another factor of 5 with large-mode-area fiber.

vOPCPA

Femtosecond optical parametric chirped-pulse amplification in birefringent step-index fiber

Michael L. Buttolph, Pavel Sidorenko, Chris B. Schaffer, and Frank W. Wise. “Femtosecond optical parametric chirped-pulse amplification in birefringent step-index fiber” Optics Letters Vol. 47, Issue 3, pp. 545-548 (2022)

While optical fiber is convenient for many applications, generating short pulses outside of the typical gain bandwidth of rare-earth dopants commonly used in fiber amplifiers and oscillators is challenging. There are relatively few dopants that are compatible with the silica glass host, which leads to significant spectral gaps in which it is difficult to generate strong ultrashort pulses. It is sometimes possible to use nonlinear wavelength conversion to generate pulses in these spectral gaps, however. Parametric amplification conveniently generates two sidebands simultaneously, though to this point compressed pulse durations have been limited to ~200 fs and non-standard fiber waveguide geometries have been necessarily employed in order to achieve phase-matching. In this work, we demonstrate optical parametric chirped-pulse amplification in commercially available birefringent step-index optical fiber, delivering tens-of-nanojoule pulses compressible to 60-70 fs at 900 nm and 1270 nm. The key advances in this work were using birefringence rather than dispersion engineering in order to achieve phase-matching, and furthermore realizing that pumping the system with an extremely broadband pulse (from a gain-managed nonlinear amplifier) would allow the generation of energetic pulses compressible to very short duration. In addition, as the amplifier works with chirped pulses, we believe that the pulse energy may further be increased by chirping the pulses to longer duration and/or by employing large-mode area fiber for parametric amplification. We plan to use this system for hyperspectral degenerate and non-degenerate two-photon excitation fluorescence microscopy in the near future, enabling studies of complex biological processes in vivo.

Starting Dynamics of Linear Mamyshev Oscillator

Starting dynamics of a linear-cavity femtosecond Mamyshev oscillator

Yi-Hao Chen, Pavel Sidorenko, Robert Thorne, Frank Wise “Starting dynamics of a linear-cavity femtosecond Mamyshev oscillator,” J. Opt. Soc. Am. B, 38, 743-748 (2021) 

This paper is chosen as Spotlight on Optics.

Mamyshev oscillator is a laser that not only generates strong pulses but is also capable of maintaining environmental stability. However, starting becomes a challenge due to the suppression of noise from continuous-wave (CW) lasing. Solutions to starting are to start with an external seed pulse, overlapped filter passbands to allow CW lasing, or self-seeding with a NPE starting arm described by Pavel et al. Here we proposed another solution to starting with pump modulation. It requires no mechanical flipping such as self-seeding and is demonstrated with full electronic control (Please watch the demonstration video here). Furthermore, it is demonstrated to reach a higher pulse energy by later increasing the filter separation. The laser is found to start reliably with pump modulation of a high repetition rate (>70 kHz) due to the emergence of a modulated mode-locked state. Besides, we found that damage from SBS constantly occurred in a linear cavity such that adding Faraday rotators is required.

6/4/2019 – Congrats to Dr. Walter Fu on completing his B Exam! Best to luck to him and all his future endeavors. Check out Walter, Zimu and Frank at the May commencement ceremony:

Normal-dispersion fiber optical parametric chirped-pulse amplification

Normal-dispersion fiber optical parametric chirped-pulse amplification

Walter Fu and Frank W. Wise, “Normal-dispersion fiber optical parametric chirped-pulse amplification,” Opt. Lett. 43, 5331-5334 (2018).

An ongoing limitation of fiber lasers is their lack of broad wavelength tunability. Here, we address this problem using fiber optical parametric chirped-pulse amplification (FOPCPA), which combines the energy capacity of chirped pulse amplification with the spectral flexibility of optical parametric amplification and the practical benefits of fiber. Notably, this is the first FOPCPA to be pumped in the normally-dispersive regime, which permits phase-matching far from the pump wavelength.

The system operates by coupling a stretched, broadband pump pulse and a continuous-wave signal into a photonic crystal fiber. At each point in time, the monochromatic signal interacts via four-wave-mixing with a different wavelength of the chirped pump, resulting in an idler that is chirped in exactly the same manner as the pump. Scalability follows from the timescale-invariance of this process: stretching the pump at constant peak power likewise stretches the idler at constant peak power, increasing the energy without affecting the dechirped duration. By exploiting this property, we are able to convert pulses from the Yb-band to the important bio-imaging window near 1300 nm, with energies of >100 nJ and femtosecond-scale durations.