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Stable multi-dimensional optical solitons have been predicted to exist in saturable

instantaneous Kerr-like nonlinear systems for many years. The experimental ob-

servation of these objects is interesting scientifically and can have important ap-

plications. However, to date no experimental observation has been reported.

The prospects of realizing these predicted phenomena depend on the accessi-

bility of the nonlinear parameters in a physical feasible system. To address this

question, we first develop a systematic way of determining the nonlinear proper-

ties of materials based on the previously developed spectrally-resolved two-beaming

coupling measurement. This new method is used to measure the nonlinear proper-

ties of several materials. The results are used to assess the prospects of producing

stable multi-dimensional optical solitons in saturable instantaneous Kerr-like non-

linear systems. We conclude that the prospects for producing three-dimensional

solitons are poor. However, it is more likely to succeed in producing stable two-

dimensional optical solitons.
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iv



ACKNOWLEDGEMENTS

I am indebted to many people in my Ph.D. study and in the preparation of this

dissertation. First and foremost, I would like to thank my advisor, Professor Frank

Wise, for his patient guidance, his sincere advices, his dedication to science and

science education, and his insightful understanding of scientific subjects. Under his

guidance, becoming an independent researcher from a graduate student has been

a very wonderful experience. He is a great scientist, a mentor, and a friend. I also

would like to thank Professor Alexander Gaeta and Professor Michal Lipson for

serving on my committee. Their suggestions and advices have undoubtedly made

this a better dissertation. I also owe it to Professor Boris Malomed for making me

think harder and learn more on many subjects related to solitons.

Thank you also goes to Kale Beckwitt, from whom I have learned a lot of

experimental tricks and the inspiring discussions between us always brought inter-

esting discoveries. I hope all is going well for him at Intel. Omer Ilday also taught

me many things in both experiments and theories. His research in MIT has been

making important progress and there is no doubt that he will continue to move

forward. I have also enjoyed some of the best and exciting scientific conversations

with Peer Fischer. His witty comments on a wide variety of subjects were the best

refresher in our often long and mind-bending discussions. I wish him best of luck

for his experiments in Rowland Institute. I am also in debt to Jeffrey Harbold.

Jeff’s humor has always helped me through the dark moments. His valuable sug-

gestions were also one main reason that my job hunting was relatively smooth. It is

good to see that he is enjoying his new career and new life in Southern California.

The dissertation was proofread by Stephen Clark. I thank him for pointing out

many errors and helping me make the dissertation easier to read.

v



I also would like to say thank you to Hyungsik Lim, whose proposals to go

to a movie were often seconded by me. He was also the person who introduced

to me the exciting sport of skiing. These outside-the-lab activities have enriched

my life in Ithaca. I also want to thank Byung-Ryool Hyun, Jeffrey Moses, Joel

Buckley, Andy Chang, Lyuba Kouznetsova, and Shian Zhou. Together they create

a enjoyable and dynamic office environment.

The primary support for this work was provided by the National Science Foun-

dation. The samples used in this work were from Dr. Bruce Aitken at Corning

Corporation and Dr. Jas Sanghera at Naval Research Laboratory. Many thanks

for their generosity.

I can’t express how grateful I am to my parents. They have always been

extremely supportive. They always try their best to provide me the opportunities

to go further and higher.

Last but not least, my deepest gratitude goes to my wife, Yi, for her support

and endurance. She is always understanding, caring, calming and strong. Life

without her would be unimaginable.

vi



TABLE OF CONTENTS

1 Introduction 1
1.1 A brief history of the soliton . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Four classes of solitons . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . 11

2 Spectrally-resolved two-beam coupling beyond the small phase
shift approximation 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Beyond small phase approximation . . . . . . . . . . . . . . . . . . 18
2.3 Comparison of linear approximation, second-order approximation

and numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Measurement of fifth- and seventh-order nonlinearities of glasses 40
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Spectrally-resolved two-beam coupling with high-order nonlinearities 42
3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Criteria for the experimental observation of multi-dimensional op-
tical solitons in saturable media∗ 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Theoretical analysis of the necessary conditions for the existence of

two- and three-dimensional solitons . . . . . . . . . . . . . . . . . . 69
4.3 Measurements of nonlinear parameters of glasses . . . . . . . . . . . 78
4.4 Stability windows for the two- and three-dimensional solitons . . . . 79
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Future directions 85

A Simulation code 90

Bibliography 119

∗Most of the results presented in this chapter have been published in [19].

vii



LIST OF FIGURES

2.1 A typical SRTBC setup. The beam out of the pulsed laser is
split into the probe-beam and the pump-beam. The ratio between
pump- and probe-beam is somewhat arbitrary but should be at
least 5 : 1 for Pump : Probe. After the sample the probe beam
is split again. The two-photon absorption (TPA) coefficient β and
instantaneous Kerr nonlinearity n2 can then be extracted from the
integrated signal and spectrally-resolved signal respectively. . . . . 14

2.2 The pump-beam induces a nonlinear phase shift upon the probe-
beam. Depending on the sign of the nonlinearity of the material
and the relative delay, the induced phase has a different temporal
shape, which results in different spectral shift. . . . . . . . . . . . 16

2.3 The nonlinear phase shift is detected in the spectral domain us-
ing a monochromater. As the delay varies, the induced spectral
shift changes and the transmission through the monochromater also
changes. This produces a typical SRTBC bipolar signal trace, as
shown in the inset. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 A two-dimensional data matrix of SRTBC. As indicated in the fig-
ure, the simulation parameters are α̃ = 0, β̃ = 0, γ̃ = 0.05, and
Ip0 = 1. This corresponds to a nonlinear phase shift ∆φNL = 0.05.
The detuning is in the unit of FWHM PSD. The time delay is in
the unit of half-width at (1/e)-maximum of the intensity profile.
A SRTBC signal trace can be obtained from sectioning the data
matrix along a fixed detuning. . . . . . . . . . . . . . . . . . . . . 29

2.5 Another two-dimensional data matrix of SRTBC. Here, the simu-
lation parameters are α̃ = 0, β̃ = 0, γ̃ = 0.3, and Ip0 = 1. This
corresponds to a nonlinear phase shift ∆φNL = 0.3. Similar to
Fig. 2.4, the detuning is in the unit of FWHM PSD. The time de-
lay is in the unit of half-width at (1/e)-maximum of the intensity
profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 SRTBC signal traces produced by a linear approximate expression,
a second-order approximate expression, and numerical simulation.
The parameters used are α̃ = 0, β̃ = 0.02, γ̃ = 0.05, and Ip0 =
1. The corresponding nonlinear phase shift ∆φNL = 0.05. The
frequency detuning is 1 FWHM PSD, and the time dealy is in
the unit of half-width at (1/e)-maximum of the field profile. The
approximate expressions agree with numerical simulation well. . . 32

viii



2.7 SRTBC signal traces produced by a linear approximate expression,
a second-order approximate expression, and numerical simulation
with parameters of 10 times the magnitude of those in Fig. 2.6.
The parameters used are α̃ = 0, β̃ = 0.2, γ̃ = 0.5, and Ip0 = 1.
The corresponding nonlinear phase shift ∆φNL is 0.5. The fre-
quency detuning is 1 FWHM PSD, and the time dealy is in the
unit of half-width at (1/e)-maximum of the field profile. It is clear
that linear approximate expression breaks down. On the contrary,
second-order approximate expression agrees with numerical simu-
lation relatively well. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Nonlinear phase shift (and thus intensity) dependence of the SRTBC
signal trace peak/valley magnitude predicted by a linear approxi-
mate expression, a second-order approximate expression, and nu-
merical simulation. The frequency detuning is 1.5 FWHM PSD.
While the second-order approximate expression agrees with the
numerical simulation better than linear approximate simulation,
at large nonlinear phase shift, the deviation of both approximate
expressions is significant. . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 Nonlinear phase shift dependence of the SRTBC signal size (peak-
valley). The frequency detuning is 1.5 FWHM PSD. The same
data in Fig. 2.8 is presented here differently, with the SRTBC trace
peak-valley amplitude plotted. . . . . . . . . . . . . . . . . . . . . 36

2.10 Nonlinear phase shift (and thus intensity) dependence of the SRTBC
signal trace peak/valley magnitude predicted by a linear approxi-
mate expression, a second-order approximate expression, and nu-
merical simulation. The frequency detuning is 0.5 FWHM PSD.
While the second-order approximate expression agrees with the nu-
merical simulation well up to a nonlinear phase shift ∼ 0.5, at large
nonlinear phase shift, the deviation of both approximate expres-
sions become significant. . . . . . . . . . . . . . . . . . . . . . . . 37

2.11 Nonlinear phase shift dependence of the SRTBC signal size (peak-
valley). The frequency detuning is 0.5 FWHM PSD. The same data
in Fig. 2.10 is presented here in differently, with the SRTBC trace
peak-valley amplitude plotted. . . . . . . . . . . . . . . . . . . . . 38

3.1 Numerical calculation is used to determine the dependence of the
signal on pump-beam intensity in the presence of χ(3) alone. Inset:
SRTBC signals calculated for the indicated nonlinear phase shifts.
The time delay is in the units of the pulse duration. . . . . . . . . 43

3.2 Extension of SRTBC to higher-order nonlinearities: The model in-
cluding higher-order nonlinear effects is used to predict the SRTBC
signal. Shown here is the effect of a self-defocusing χ(5) on a self-
focusing χ(3). The time delay is in the units of the pulse duration. . 57

ix



3.3 Intensity dependence of the SRTBC signal magnitude (peak-valley)
for various values of self-focusing χ(3) and for a self-focusing χ(3)

with a self-defocusing χ(5). . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 Intensity dependence of the (a) SRTBC signal magnitude (normal-

ized peak-valley transmission difference) and (b) nonlinear absorp-
tion signal of As2S3. Insets show examples of SRTBC and nonlin-
ear absorption traces (symbols) along with the best fit theoretical
curves. The time delay is given in units of the pulse duration. . . . 61

4.1 The operation window for the 2D solitons, as predicted on the basis
of the experimentally-measured characteristics of the glass. The
hatched area is the window neglecting loss. The shaded area is the
dramatically reduced (but definitely existing) window found with
loss taken into account. . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 The operation window for 3D solitons. The meaning of the hatched
area is the same as in the 2D case, i.e., it shows the window ob-
tained neglecting loss. When loss is taken into account, the window
vanishes completely. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 The refractive index and absorption/gain for a noninverted Lorentz
oscillator (solid line) and an inverted Lorentz oscillator (dashed
line). For a give frequency, the sign of the dispersion properties
for an inverted Lorentz oscillator will be opposite to that of an
noninverted oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . 87

x



LIST OF TABLES

3.1 Measured n2, |n4/n2|, and α2. For sapphire, both n4 and α2 are un-
der the detection limit and upper-limits are given. For all samples,
a self-defocusing n4(< 0) is observed. . . . . . . . . . . . . . . . . . 62

xi



Chapter 1

Introduction
Unlike 170 years ago when the soliton was first discovered, today nonlinear science

is considered one of the most important frontiers in understanding the fundamen-

tals of nature. Soliton’s status as a hallmark of nonlinear science has been firmly

established. It took many years for people to understand that nonlinear effects

in general and solitons in particular are not just unimportant mathematical cu-

riosities, but are an important path to understanding nature. From biology to

metrology to plasma physics to optics, nonlinear effects and solitons all play im-

portant roles (c.f. [1]). In fact, the understanding of the soliton gained since its

discovery has helped to enable many important technological breakthroughs, such

as the prediction of tsunamis and optical communications, just to name a few.

Although great progress has been made both in the theoretical understanding

and in experimental demonstrations in the past 50 years, soliton research is still

a young field. There remain a wide range of systems to be explored and new sys-

tems continue to be discovered in different areas of physics. Novel theories and

experimental approaches are being developed to apply to these new territories. All

these have been accelerated by the explosion of computational power in the past

20 years. Calculation unthinkable 20 years ago can now be carried out on personal

computers in the matter of minutes. It is also this abundance of computational

power that enables soliton researchers to expand the horizon to include systems

that are not exactly-solvable. The study of which requires large amount of numer-

ical simulation. One example of these systems is the optical quadratic nonlinear

system.

1
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Among the many important questions that remain to be answered in optical

soliton research is: How does one make a stable three-dimensional (3D) optical

soliton? A stable 3D optical soliton is a localized electromagnetic wave confined

in all three spatial dimensions and in time which propagates stably. Such an ob-

ject has been predicted to exist theoretically in optical systems with appropriate

nonlinear properties. But it has not been observed experimentally to date. The

question by itself is scientifically important. Moreover, the answer to this question

could also start another technology revolution in telecommunications and compu-

tation [2]. Recent development in the optical quadratic nonlinear system has been

very encouraging [3]. Important progress has been made towards answering this

question and more research efforts are being invested in this direction.

Additionally, theoretical study has shown that a saturable instantaneous Kerr

nonlinear system also supports stable 3D optical solitons [4]. The saturation of

instantaneous Kerr nonlinearities occurs due to the existence of higher-order non-

linearities such as χ(5) and χ(7). Theoretical predictions require that these higher-

order nonlinearities linearities be of “appropriate” magnitude. It is then natural

to ask if such an “appropriate” amount of higher-order nonlinearities can be found

in real materials. The main focus of this work is to investigate the prospects of

experimentally realizing stable 3D optical solitons in a saturable instantaneous

Kerr nonlinear system. In order to answer this question, we develop a systematic

way of determining the higher-order nonlinearities of materials based on spectrally-

resolved two-beam coupling (SRTBC). We utilize the developed method to measure

several materials and assess the prospects of realizing the goal of producing stable

3D optical solitons.

To provide the needed context for the subject, a brief history of the soliton and
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a simple classification of different types of solitons are given in the following two

sections.

1.1 A brief history of the soliton

It is generally accepted that the first documented record of solitons was made by

John Scott Russell, a Scottish engineer, in August 1834 (c.f. [5]; most historical

accounts in this section are according to Filippov [1], Remoissenet [5], and Gesztesy

and Holden [6]). He observed a smooth well-defined heap of water that detached

itself from the prow of a barge when the barge was brought to rest. The heap

propagated without changing shape and speed for over two miles along the Union

Canal linking Edinburgh with Glasgow. He described the event in the following

terms: “I was observing the motion of a boat which was rapidly drawn along a

narrow channel by a pair of horses, when the boat suddenly stopped-not so the

mass of water in the channel which it had put in motion; it accumulated round the

prow of the vessel in a state of violent agitation, then suddenly leaving it behind

rolled forward with great velocity, assuming the form of a large solitary elevation,

a rounded, smooth and well-defined heap of water, which continued its course along

the channel apparently without change of form or diminution of speed. I followed it

on horseback, and overtook it still rolling on at a rate of some eight or nine miles

an hour, preserving its original figure some thirty feet long and a foot to a foot and

a half in height. Its height gradually diminished, and after a chase of one or two

miles I lost it in the windings if the channel. Such, in the month of August 1834,

was my first chance interview with that singular and beautiful phenomenon which

I have called Wave of Translation,... ”[7]

Russell’s observations were followed by numerous water-tank experiments and
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he established the following important properties for these “solitary waves”:

(1)An isolated solitary wave has a constant velocity and does not change its shape

(2)The dependence of the velocity v on the canal depth h and the height of the

wave y0, is given by the relation

v =
√

g(y0 + h) (1.1)

where g is the gravity acceleration. The formula is valid for y0 < h.

(3)Depending on the relation between its height and length, an initial elevation of

water might evolve into one or more solitary waves.

(4)There exists only solitary elevations (humps); solitary cavities (depression) are

never observed. An initial depression is transformed into an oscillatory wave, not

a solitary depression.

Unfortunately, Russell’s report went unnoticed on the continent, and even more

unfortunately, in England, two distinguished scientists– Airy and Stokes – read his

paper carefully and severely criticized it. They concluded that what Russell had

described was impossible according to their own theories on nonlinear shallow-

water waves. The controversy had a chilling effect and the solitary wave was

forgotten by most people. More than two decades had passed before a resolution

to the controversy was provided.

It later became clear that the controversy arose from neglecting dispersion, a

crucial factor for soliton formation, in both Airy’s and Stokes’ calculation. This

was pointed out and Russell’s claim was confirmed independently by French scien-

tist Joseph Valentine de Boussinesq (1871), Lord Rayleigh (1876) and Saint-Venant

(1885). Nevertheless, these new developments appeared insufficient to overcome

the criticism and establish the final truth, partly due to the very high prestige of

Airy and Stokes. It would have to wait until 1895 for the controversy to be com-
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pletely resolved when Dutch scientist Diderik Johannes Korteweg and his student

Gustav de Vries reexamined and summarized all previous considerations on the

subject. They confirmed that Airy’s and Stokes’ opinions were incorrect and in-

troduced a simpler modelling equation for the shallow water wave, the now famous

KdV equation. From the KdV equation, they derived a solution which was exactly

Russell’s solitary wave.

While the work of Korteweg and de Vries did resurrect solitons as a scientific

reality, the general scientific community would not pay much attention to the

subject and it remained an unimportant curiosity in the mathematical structure

in nonlinear wave theory for many decades more. However, a remarkable discovery

made by E. Fermi, J. Pasta and S. Ulam (FPU) in their study in the heat transport

problem in 1955 revived the interest in the KdV equation and solitons.

At first glance, the problem that FPU considered at first sight had nothing to

do with solitons, it was related to heat transport. More specifically, the subject was

how a system starting with energy concentrating in a single normal mode reached

thermal equilibrium – the equipartition of all possible normal modes. It was ob-

vious that a purely linear system (e.g., a crystal in which the interaction between

atoms is purely harmonic) would never reach thermal equilibrium, since all modes

were independent of each other. Debye suggested in 1914 that the nonlinearity of

the atomic interaction caused the modes to exchange energy and resulted in ther-

mal equilibrium. FPU in 1955 attempted to verify Debye’s conjecture by using

computer simulation for a one-dimensional lattice. They had expected to observe

equipartition of energy between modes and thermal equilibrium eventually. How-

ever, much to their surprise, they did not find that the energy spreaded through

out different modes, in stead, they observed that the energy distribution returned
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almost back to the originally excited mode periodically. This surprise later led N.

Zabusky and M. Kruskal to consider the problem using the KdV equation and suc-

ceeded in explaining the recurrence phenomenon by soliton collision. Their work

prepared the ground for the breakthrough by Gardern et al. in 1967, who intro-

duced the inverse-scattering approach to exactly solve the KdV equation. The next

year, Lax introduced the whole hierarchy of nonlinear evolution of the KdV type.

In the same year (1968), Zakharov introduced the nonlinear Schrodinger equation

(NLSE) to describe the time evolution of the envelope of weakly nonlinear deep-

water wave trains. These “envelope solitons” or “group solitons” were further

studied and Zakharov and Shabat later (1971) solved the equation exactly also

using the inverse-scattering method. The solutions were verified experimentally

later by Yuen and Lake (1975). At roughly the same period of time, the parallel

development took place in the field of the electromagnetic wave. Hasegawa and

Tappert showed theoretically that the envelope of a light wave propagating in an

optical fiber can also be described by NLS. They predicted the existence of bright

solitons, which now are under investigation and have also made important impacts

on modern optical telecommunications.

The third main class of soliton is the Frenkel-Kontorova (FK) soliton introduced

in 1938. This soliton is described by the Sine-Gordon equation and is sometimes

called a Sine-Gordon (SG) soliton. Yakov Il’ich Frenkel and T. A. Kontorova first

connected the dislocation in the crystalline structure of solids with the concept of

soliton. In many systems the Sine-Gordon equation (or its relatives) describes the

interaction and evolution of the defects of the crystalline structure and solitons are

the localized solutions to such systems. These also include the magnetic domain

walls which are closely related to the soliton solution. One of the most striking
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difference of this type of soliton from the other two types (the KdV soliton and

the envelope soliton) is its persistence. For the KdV soliton and the envelope

soliton, the presence of dissipative effects in general destroy the solitons completely.

However, for a FK soliton, it is possible that the dissipative effects only “stop” the

movement of the soliton, and the soliton becomes at rest, but can exist eternally

in principle . For example, a defect (dislocation) can exist for as long as the host

crystal exists. This third type of soliton is less familiar to wave scientists but is

very important in solid state physics. It is sometimes also referred as a topological

soliton for the obvious reason.

The above summarizes some of the most important milestones in the devel-

opment in soliton study up to 1980. One common property among the systems

mentioned is that they are all integrable systems [8]. A system that is integrable

can be solved exactly using the inverse scattering transform (IST) and analytical

solutions can be obtained. To mathematicians, these are the systems where the

word “soliton” can be used in its most strict sense: a soliton is a localized exact

solution of a nonlinear wave equation, its shape and speed do not change during

the propagation, and will not be altered by a collision with other solitons. Although

these integrable systems are valuable models, the real world is full of effects such

as loss mechanisms, external driving forces, defects, etc. These effects make the

systems non-integrable and perturb the original soliton states. As a result, the

solitary objects can no longer exist eternally and become meta-stable. It is then

more practical to relax the definition of soliton to include all meta-stable, localized

and finite energy states that are the outcomes of the balance between nonlinear

and linear effects.

This extended definition allows us to include one more class of nonlinear system
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that is not integrable: the quadratic nonlinear system. Many important theoreti-

cal and experimental developments in the study of solitons have been made in this

system during the past 20 years. The optical quadratic nonlinear system is espe-

cially promising for its potential of achieving the long-sought realization of stable

multi-dimensional optical solitons. The key to producing stable multi-dimensional

optical solitons is the saturation of the third-order nonlinearity χ(3). Ordinarily

this would require higher-order nonlinearities such as χ(5), χ(7), etc, as mentioned

previously. However, an alternative was suggested by Stegeman et al in 1993 [9].

As they pointed out, the nonlinear response of an optical quadratic nonlinear sys-

tem (with only χ(2)) can mimic that of a saturable χ(3) system through a process

called “cascading”. Many theoretical and experimental works have been done since

[3] and the first experimental demonstration of two dimensional spatio-tmeporal

solitons appeared in 1999 (Liu et al.)[10].

In the next section, we will briefly introduce the nonlinear equations underlying

the above mentioned four classes of solitons: KdV soliton, Envelope soliton, FK

soliton, and quadratic soliton.

1.2 Four classes of solitons

(i) KdV soliton

This is the first discovered soliton. The key equation for this class of soliton is

ut +
1

4
uxxx −

2

3
uux = 0. (1.2)

Some example systems are the shallow water wave and nerve pulse transportation.

(ii) Envelope soliton

The envelope soliton is probably the most familiar to optical scientists. The equa-
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tion that describes the system is usually called the nonlinear Schrödinger equation

(NLSE) due to its similarity to the Schrödinger equation. The general form of

NLSE is

ut +
i

2
uxx − i|u|2u = 0. (1.3)

This equation describes systems such as the nonlinear optical fiber with only in-

stantaneous third-order nonlinearity χ(3). The evolution of deep water waves can

also be described by this equation. The stationary solutions in this system are “en-

velope solitons”, which consist of a hyperbolic secant envelope with modulation

at the imposed carrier frequency. More generally speaking, the NLSE is a spe-

cial case of a broader class of equation, the Ablowitz-Kaup-Newell-Sequer (AKNS)

hierachy:

ut +
i

2
uxx − iu2v = 0

vt −
i

2
vxx + iuv2 = 0. (1.4)

It is easy to see that when v = u∗, the AKNS equation reduces to the familiar

NLSE.

The stationary soliton solutions of the NLSE become unstable if the equation

is extended to more than one dimension:

ut +
i

2
∇2

du − i|u|2u = 0, (1.5)

where d > 1. But this instability can be eliminated if the nonlinear term in the

NLSE is generalized to include higher-order nonlinear effects, which could saturate

the third-order nonlinearity [4]. The generalized NLSE takes the form:

ut +
i

2
uxx − if(|u|2)u = 0. (1.6)
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For a material with cubic-quintic nonlinearity, f(|u|2) = α|u|2 − β|u|4. For a

material with saturable nonlinearity, we have f(|u|2) = η|u|2/(1 + γ|u|2). The

generalized NLSE becomes important when the optical field in a material is strong

enough so that the higher-order nonlinearities become non-negligible. The mag-

nitude of these higher-order nonlinear effects determine the intensity threshold

beyond which the stationary soliton solutions become stable. However, the un-

avoidable accompanying nonlinear loss limits the maximum intensity that can be

used, since the higher the intensity, the faster the energy decay due to the nonlinear

loss. Does a “window of parameters” exist between these conflicting requirements?

This is the question the present work tries to answer.

(iii) FK soliton

The key equation that describes this class of soliton is the Sine-Gordon equation:

uxt − sin(u) = 0. (1.7)

Some of the examples of this family of solitons are dislocations in crystalline struc-

ture and magnetic domain walls.

(iv) Quadratic soliton

The quadratic system can be described by the following coupled equations:

iut + uxx − u + vu∗ = 0,

2ivt + δvxx − γv +
1

2
u2 = 0. (1.8)

As mentioned in the previous section, this system has gained a lot of attention

among optical scientists due to its potential for achieving a large and saturable

nonlinearity through the cascading process [9].
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1.3 Organization of the dissertation

Among the four classes of solitons introduced in the previous section, the more

relevant ones to optical sciences are envelope solitons (described by NLSE) and

quadratic solitons. These two classes of solitons provide two different approaches

to achieve the goal of experimentally producing stable multi-dimensional solitons:

saturable third-order nonlinearity through cascading χ(2) (quadratic system) and

saturable third-order nonlinearity through higher-order nonlinearities (generalized

NLSE). This work will focus on the latter.

In order to assess the prospects of using higher-order nonlinearities to stabi-

lize multi-dimensional solitons, we need to develop a systematic way of measuring

these quantities. Spectrally-resolved two-beam coupling (SRTBC) is a technique

originally developed for measuring the third-order nonlinearity [11] with high sensi-

tivity. We extend this technique and use it to measure higher-order nonlinearities.

The magnitude of higher-order nonlinearities are generally much smaller than

third-order effect. In order to observe these effects, high-intensity optical fields

must be used. Prior studies with SRTBC have all been limited to relatively low

intensity and to the small nonlinear phase shift range. In this range, the signal

size is proportional to the optical field intensity for a fixed third-order nonlinearity.

Näıvely, one would expect that higher-order nonlinear effects manifest themselves

as the deviation from a straight line in the signal size vs. intensity relation. As

discussed in Chapter 2, this is not the case. For a nonlinear system with only

instantaneous third-order nonlinearity, the signal size is not proportional to the

intensity at high intensities in general . Thus the deviation from a straight line itself

is not a guarantee that higher-order nonlinear effects are present. This observation

leads to the work discussed in Chapter 3, where the SRTBC model is extended
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to include higher-order nonlinearities. With the extended technique, we are able

to determine the higher-order nonlinear parameters for several glass materials.

Chapter 4 is where we assess the prospects of stabilizing multi-dimensional solitons

through higher-order nonlinearities. In Chapter 5, we propose some interesting

ideas which could point to future directions of research on multi-dimensional optical

solitons.

To summarize, the new results presented in this work are (i) The extension

of SRTBC theory to include arbitrary large signals and higher-order nonlineari-

ties in the analysis; (ii) The first measurements of seventh-order nonlinearities in

transparent glasses; (iii) The first systematic investigation on the attainable physi-

cal parameter space for multi-dimensional solitons experiments with nonlinear loss

taken into account.



Chapter 2

Spectrally-resolved two-beam coupling

beyond the small phase shift

approximation
The conventional spectrally-resolved two-beam coupling experiment assumes a

small nonlinear phase shift and uses an approximate expression in which the signal

size is proportional to the phase shift. We show that as the nonlinear phase shift

becomes large, the signal-size will not increase proportionally to the intensity and

the usual approximate expression should be replaced with either a more accurate

approximate expression or numerical simulation.

2.1 Introduction

Spectrally-resolved two-beam coupling (SRTBC) is a simple way to determine the

magnitude and the sign of Re[χ(3)] (proportional to the nonlinear refractive index

n2) and Im[χ(3)] (proportional to the two-photon absorption coefficient β). As

demonstrated in [11], this technique can achieve high sensitivity and can detect

a nonlinear phase shift as small as 3 × 10−6 rad. A typical setup is shown in

Fig. 2.1. It is essentially a pump-probe detection setup. The pump- and probe-

beam cross at the sample and the instantaneous Kerr nonlinearity causes cross-

phase modulation, which affects the probe-beam spectrum. The change can then

be detected and analyzed to gain knowledge of the material instantaneous Kerr

nonlinearity. In our experiments, the interaction range of the pump- and probe-

13
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delay scaning

pump

probe

pulsed laser
nonlinear absorption
signal

spectral resolved
signal

spectrometer

sample

Figure 2.1: A typical SRTBC setup. The beam out of the pulsed laser is split into

the probe-beam and the pump-beam. The ratio between pump- and probe-beam

is somewhat arbitrary but should be at least 5 : 1 for Pump : Probe. After the

sample the probe beam is split again. The two-photon absorption (TPA) coefficient

β and instantaneous Kerr nonlinearity n2 can then be extracted from the integrated

signal and spectrally-resolved signal respectively.
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beam is usually short (∼mm) and for the typical pulse width (∼100 fs) we use

in the experiments. The effects of group-velocity dispersion (GVD) can be safely

ignored in the analysis.

To gain some intuitive understanding of the mechanism of SRTBC, Fig. 2.2

and Fig. 2.3 illustrate what happens in the time and frequency domain during

the pump-probe interaction for a material with positive instantaneous Kerr non-

linearity (n2 > 0). The intensity profile of the pump-beam creates a nonuniform

refractive index profile in time for the probe-beam. As a result, a time-dependent

nonlinear phase is imposed on the probe-beam:

φNL(L, t) =
4πn2Ipump(t)L

λ0

, (2.1)

where Ipump(t) is the pump-beam intensity, L is the interaction length, and λ0

is the probe-beam center wavelength in vacuum. We know that the probe-beam

time- and space-dependency can be described by:

u(L, t) = u0(t − t0)exp
[
i[(

2πn0

λ0

)L + φNL(L, t) − ω0t]
]
, (2.2)

where n0 is the linear refractive index of the material and u0(t− t0) is a Gaussian

profile centered at t0. Since the energy is concentrated around t0, we expand

φNL(L, t) around t0:

φNL(L, t) = φNL(L, t0) +
dφNL(L, t)

dt

∣∣∣
t=t0

(t − t0)

= φNL(L, t0) +
4πn2L

λ0

dIpump(t)

dt

∣∣∣
t=t0

(t − t0) (2.3)

Substitute Eqn. 2.3 into Eqn. 2.4, we get

u(L, t) = u0(t − t0)exp
[
i[φ0 − (ω0 + δω)(t − t0)]

]
, (2.4)

where φ0 = (2πn0L/λ0) + ω0t0 + φNL(L, to) and

δω =
4πn2L

λ0

dIpump(t)

dt
(2.5)



16

delay>0

>0
dn/dt<0

I(t)

t

dn/dt>0
<0

delay<0

Figure 2.2: The pump-beam induces a nonlinear phase shift upon the probe-beam.

Depending on the sign of the nonlinearity of the material and the relative delay, the

induced phase has a different temporal shape, which results in different spectral

shift.
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delay < 0

PS
D delay > 0

Figure 2.3: The nonlinear phase shift is detected in the spectral domain using a

monochromater. As the delay varies, the induced spectral shift changes and the

transmission through the monochromater also changes. This produces a typical

SRTBC bipolar signal trace, as shown in the inset.
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is the frequency shift. From Fig. 2.2 we can see that for a material with a positive

instantaneous Kerr nonlinearity, the probe-beam with negative time delay relative

to the pump-beam will experience a negative frequency shift. On the contrary, if

the delay is positive, it will experience a positive frequency shift. It can also be

seen from Eqn. 2.5 that the frequency shift is proportional to the magnitude of the

instantaneous Kerr nonlinearity n2 and the amplitude of the pump-beam intensity.

As illustrated in Fig. 2.3, the typical SRTBC bipolar signal is obtained through

selecting a specific component of the spectrum.

2.2 Beyond small phase approximation

Although the explanation of the mechanism of SRTBC described in the previous

section can provide some intuition and a working picture, a more mathematical

rigorous description is needed for more accurate analysis as well as for extending the

model beyond the small phase shift limit. The equations describing the nonlinear

interaction of pump- and probe-beam for material with only instantaneous third-

order nonlinearity (χ(3)) have been previously derived [11, 12]:

∂Ip

∂z
+

1

v

∂Ip

∂t
= −(α + βIp)Ip,

∂φp

∂z
+

1

v

∂φp

∂t
=

ω0

c
n2Ip,

∂Is

∂z
+

1

v

∂Is

∂t
= −(α + 2βIp)Is,

∂φs

∂z
+

1

v

∂φs

∂t
= 2

ω0

c
n2Ip, (2.6)

where Ip(s) and φp(s) are the intensity and the phase of the temporal envelope of

the pump (probe) beam. α is the linear absorption coefficient, and β is the TPA

coefficient. n2 is the instantaneous Kerr nonlinearity and v is the group velocity.

An expression for small-phase shift SRTBC signal (relative transmittance)for a
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Gaussian pulse E(t) ∼ exp(−t2/t20) has also been given previously [11]:

∆T

T
=

2√
3
exp(δ2t20/6)exp(−2τ 2/3t20)

×[2(ω0n2LIp0/c)sin(2δτ/3) − βLIp0cos(2δτ/3)], (2.7)

where Ip0 is the peak intensity of the pump-beam, τ is the probe-beam delay

relative to pump-beam and δ = ω − ω0 is the detuning of the monochrometer

from the center frequency. The expression is valid for small phase shift (i.e. when

∆φ ≡ ω0Ip0n2L/c is less than ∼ 0.1). Here, we extend the expression to include

the case when the phase shift is larger.

Starting from Eqns. 2.6, we first introduce the transformation:

ẑ = z

t̂ = t − z

v
. (2.8)

This changes the time frame to the “moving frame” with the velocity of the group

velocity and simplifies the equations:

∂Ip

∂ẑ
= −(α + βIp)Ip,

∂φp

∂ẑ
=

ω0

c
n2Ip,

∂Is

∂ẑ
= −(α + 2βIp)Is,

∂φs

∂ẑ
= 2

ω0

c
n2Ip. (2.9)

We can further normalize ẑ to the total interaction length L through the following

transformation:

ẑ = Lξ,

α̃ = Lα,

β̃ = Lβ,

γ̃ =
Lω0n2

c
. (2.10)
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We now have:

∂Ip

∂ξ
= −(α̃ + β̃Ip)Ip,

∂φp

∂ξ
= γ̃Ip,

∂Is

∂ξ
= −(α̃ + 2β̃Ip)Is,

∂φs

∂ξ
= 2γ̃Ip. (2.11)

Although the equations seem complicated, they are actually analytically solvable.

We proceed as follows:

(
∂ξ

∂Ip

)

t̂

=

(
∂Ip

∂ξ

)
−1

t̂

=
−1

α̃Ip + β̃I2
p

. (2.12)

The above equation can be solved, we get

ξ = F̃ (t̂) − 1

α̃

[
ln Ip − ln(α̃ + β̃Ip)

]
, (2.13)

where

F̃ (t̂) =
1

α̃

[
ln Ip(ξ = 0, t̂) − ln (α̃ + β̃Ip(ξ = 0, t̂))

]
(2.14)

is determined by the initial launched pump-pulse shape Ip(ξ = 0, t̂). From Eqn. 2.13,

we have

−α̃(ξ − F̃ (t̂)) = ln(
Ip

α̃ + β̃Ip

), (2.15)

which yields

exp
[
α̃(ξ − F̃ (t̂))

]
= β̃ +

α̃

Ip

. (2.16)

More explicitly, we have

Ip(ξ, t̂) =
α̃

exp[α̃(ξ − F̃ (t̂))] − β̃

=
α̃

eα̃ξ
[
β̃ +

α̃

Ip(ξ = 0, t̂)

]
− β̃

(2.17)
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Using Eqn. 2.17, it is then straightforward to calculate φp(ξ, t̂), φs(ξ, t̂) and Is(ξ, t̂).

Direct integration of Ip(ξ, t̂) yields:

φp(ξ, t̂) = γ̃
∫

Ip(ξ, t̂)dξ =
∫ α̃γ̃

eα̃ξ
[
β̃ +

α̃

Ip(ξ = 0, t̂)

]
− β̃

dξ

=
∫ α̃γ̃

β̃

( Ĝeα̃ξ

Ĝeα̃ξ − β̃
− 1

)
dξ

=
γ̃

β̃

[
ln(Ĝeα̃ξ − β̃) − α̃ξ

]
− γ̃

β̃
ln(Ĝ − β̃) + φp(ξ = 0, t̂)

=
γ̃

β̃

[
ln(Ĝeα̃ξ − β̃) − α̃ξ

]
− γ̃

β̃
ln

( α̃

Ip(ξ = 0, t̂)

)

+φp(ξ = 0, t̂). (2.18)

We have used the notation

Ĝ ≡ β̃ +
α̃

Ip(ξ = 0, t̂)
. (2.19)

Similarly,

φs(ξ, t̂) = 2γ̃
∫

Ip(ξ, t̂)dξ

=
∫ 2α̃γ̃

β̃

( Ĝeα̃ξ

Ĝeα̃ξ − β̃
− 1

)
dξ

=
2γ̃

β̃

[
ln(Ĝeα̃ξ − β̃) − α̃ξ

]
− 2γ̃

β̃
ln(Ĝ − β̃) + φs(ξ = 0, t̂)

=
2γ̃

β̃

[
ln(Ĝeα̃ξ − β̃) − α̃ξ

]
− 2γ̃

β̃
ln

( α̃

Ip(ξ = 0, t̂)

)

+φs(ξ = 0, t̂). (2.20)

For Is, we have the following:

(∂Is

∂ξ

)

Is

= −(α̃ + 2β̃Ip), (2.21)

which yields

ln Is(ξ, t̂) = −α̃ξ − 2β̃
∫

Ip(ξ, t̂)dξ
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= −α̃ξ − 2
[
ln(Ĝeα̃ξ − β̃) − α̃ξ

]
+ 2 ln

( α̃

Ip(ξ = 0, t̂)

)

+ ln Is(ξ = 0, t̂), (2.22)

or equivalently,

Is(ξ, t̂) = Is(ξ = 0, t̂)

eα̃ξ
( α̃

Ip(ξ = 0, t̂)

)2

(Ĝeα̃ξ − β̃)2

= Is(ξ = 0, t̂)

eα̃ξ
( α̃

Ip(ξ = 0, t̂)

)2

(
eα̃ξ α̃

Ip(ξ = 0, t̂)
− β̃(1 − eα̃ξ)

)2
(2.23)

One simple way to verify expressions Eqn. 2.17, Eqn. 2.18, Eqn. 2.20 and Eqn. 2.23

is by taking the limit β̃ → 0. We then have

lim
β̃→0

Ip(ξ, t̂) = lim
β̃→0

α̃

eα̃ξ
[
β̃ +

α̃

Ip(ξ = 0, t̂)

]
− β̃

= Ip(ξ = 0, t̂)e−α̃ξ

lim
β̃→0

φp(ξ, t̂) = lim
β̃→0

{
γ̃

β̃

[
ln(Ĝeα̃ξ − β̃) − α̃ξ

]
− γ̃

β̃
ln

( α̃

Ip(ξ = 0, t̂)

)}

+φp(ξ = 0, t̂)

= lim
β̃→0

{
γ̃

β̃
ln

[(Ĝeα̃ξ − β̃)e−α̃ξIp(ξ = 0, t̂)

α̃

]}

+φp(ξ = 0, t̂)

= lim
β̃→0

{
γ̃

β̃
ln

[ β̃(1 − e−α̃ξ)Ip(ξ = 0, t̂) + α̃

α̃

]}

+φp(ξ = 0, t̂)

= lim
β̃→0

{[ γ̃(1 − e−α̃ξ)Ip(ξ = 0, t̂)

α̃ + β̃(1 − e−α̃ξ)Ip(ξ = 0, t̂)

]}

+φp(ξ = 0, t̂)

= φp(ξ = 0, t̂) +
γ̃

α̃
(1 − e−α̃ξ)Ip(ξ = 0, t̂)

lim
β̃→0

Is(ξ, t̂) = lim
β̃→0

Is(ξ = 0, t̂)

eα̃ξ
( α̃

Ip(ξ = 0, t̂)

)2

(
eα̃ξ α̃

Ip(ξ = 0, t̂)
− β̃(1 − eα̃ξ)

)2
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= Is(ξ = 0, t̂)e−α̃ξ

lim
β̃→0

φs(ξ, t̂) = lim
β̃→0

2γ̃

β̃

[
ln(Ĝeα̃ξ − β̃) − α̃ξ

]
− 2γ̃

β̃
ln

( α̃

Ip(ξ = 0, t̂)

)

+φs(ξ = 0, t̂)

= φs(ξ = 0, t̂) +
2γ̃

α̃
(1 − e−α̃ξ)Ip(ξ = 0, t̂). (2.24)

The result is consistent with the result from directly solving Eqn. 2.11 with β̃ = 0.

With the expressions Eqn. 2.17, Eqn. 2.18, Eqn. 2.20 and Eqn. 2.23, we are

ready to write down the probe beam field after the propagation of the distance L,

Es(1, t̂).

Es(1, t̂) ∝ [Is(1, t̂)]
1/2exp[iφs(1, t̂)]

= [Is(0, t̂)]
1/2 eα̃/2α̃

Ip(0, t̂)(Ĝeα̃ − β̃)

×exp[iφs(0, t̂)]exp
{
i
2γ̃

β̃

[
ln

(Ĝ − β̃e−α̃)Ip(0, t̂)

α̃

]}

= [Is(0, t̂)]
1/2exp[iφs(0, t̂)]exp(−α̃/2)

exp
[
i
2γ̃

β̃
ln(1 +

β̃

α̃
(1 − e−α̃)Ip(0, t̂))]

(1 +
β̃

α̃
(1 − e−α̃)Ip(0, t̂))

(2.25)

The SRTBC signal trace can then be calculated:

∆T

T
=

∣∣∣∣∣
F[Es(1, t̂)]

F[Es(0, t̂)]

∣∣∣∣∣

2

− 1, (2.26)

where F[ · ] denotes Fourier transform.

We have derived the most general expression for the SRTBC trace and using

Eqn. 2.25 and Eqn. 2.26 one can predict the SRTBC trace for arbitrary initial pulse

shape and initial phase. Although this expression contains all possible cases, it is

complicated and involves integration. In many cases, a simpler algebraic expression

is more desirable. We will derive such an expression now.
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For simplicity, we define:

Θ ≡ β̃(1 − eα̃)

α̃
Ip(0, t̂) (2.27)

We can expand Eqn. 2.25 in Θ

Es(1, t̂) = Es(0, t̂)e
−α̃/2

exp[i
2γ̃

β̃
ln(1 + Θ)]

1 + Θ

= Es(0, t̂)e
−α̃/2(1 − Θ + Θ2 − Θ3 + ...)exp[i

2γ̃

β̃
ln(1 + Θ)]

= Es(0, t̂)e
−α̃/2(1 − Θ + Θ2 − Θ3 + ...)

×
{
1 + [

i2γ̃

β̃
(Θ − Θ2

2
+

Θ3

3
− ...)] +

1

2!
[
i2γ̃

β̃
(Θ − Θ2

2
+

Θ3

3
− ...)]2

+
1

3!
[
i2γ̃

β̃
(Θ − Θ2

2
+

Θ3

3
− ...)]3 + ...

}
(2.28)

On the other hand we also have

e−α̃/2 = 1 − α̃

2
+

α̃2

2!22
− α̃3

3!23
+ ... (2.29)

With the above expansion Eqn. 2.29 we can rewrite Es(1, t̂):

Es(1, t̂) = Es(0, t̂)(1 − α̃

2
+

α̃2

2!22
− α̃3

3!23
+ ...)(1 − Θ + Θ2 − Θ3 + ...)

×
{
1 + [

i2γ̃

β̃
(Θ − Θ2

2
+

Θ3

3
− ...)] +

1

2!
[
i2γ̃

β̃
(Θ − Θ2

2
+

Θ3

3
− ...)]2

+
1

3!
[
i2γ̃

β̃
(Θ − Θ2

2
+

Θ3

3
− ...)]3 + ...

}
(2.30)

Furthermore,

(1 − e−α̃)

α̃
=

1 − (1 − α̃ +
α̃2

2!
− α̃3

3!
+ ...)

α̃

= 1 − α̃

2!
+

α̃2

3!
− ... (2.31)

So we have

Θ = β̃Ip(0, t̂)(1 − α̃

2!
+

α̃2

3!
− ...). (2.32)
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Expanding Eqn. 2.30 and keeping the lowest two orders of α̃, β̃ and γ̃ (and thus

of Θ, since Θ is the order of β̃:)

Es(1, t̂) = Es(0, t̂)(1 − α̃

2
+

α̃2

2!22
)(1 − Θ + Θ2)

×(1 +
i2γ̃

β̃
Θ − iγ̃

β̃
Θ2 − 2γ̃2

β̃2
Θ2) + ...

= Es(0, t̂)(1 − α̃

2
− Θ +

i2γ̃

β̃
Θ +

α̃2

8
+ Θ2 − iγ̃

β̃
Θ2 −

2γ̃2

β̃2
Θ2 +

α̃

2
Θ − iα̃γ̃

β̃
Θ − i2γ̃

β̃
Θ2 + ...)

= Es(0, t̂)
[
1 − α̃

2
− β̃Ip(0, t̂) + 2iγ̃Ip(0, t̂) + α̃β̃Ip(0, t̂) − i2α̃γ̃Ip(0, t̂)

+
α̃2

8
+ β̃2

(
Ip(0, t̂)

)2 − i3β̃γ̃
(
Ip(0, t̂)

)2 − 2γ̃2
(
Ip(0, t̂)

)2
+ ...

]
(2.33)

We now assume the pulses are Gaussian and initial phase is zero:

Ep(0, t̂) = Ep0e
−t̂2/t2

0

Es(0, t̂) = Es0e
−(t̂−τ)2/t2

0 (2.34)

and

Ip(0, t̂) = Ip0e
−2t̂2/t2

0

Is(0, t̂) = Is0e
−2(t̂−τ)2/t2

0 (2.35)

With these, we obtain the expression for Es(1, t̂)

Es(1, t̂) = Es0

{
(1 − α̃

2
+

α̃2

8
)exp[−(t̂ − τ)2

t20
] − (β̃ − i2γ̃ − α̃β̃ + i2α̃γ̃)

×Ip0exp[−(t̂ − τ)2

t20
]exp[−2t̂2

t20
] + (β̃2 − 2γ̃2 − i3β̃γ̃)

×I2
p0exp[−(t̂ − τ)2

t20
]exp[−4t̂2

t20
] + ...

}
(2.36)

Using Fourier transform

F

[
e−at̂2

]
=

1√
2a

e−ω2/(4a) (2.37)
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We have

F

[
Es(1, t̂)

]
= Es0

{ t0√
2
(1 − α̃

2
+

α̃2

8
)exp[iωτ ]exp[−ω2t20

4
]

− t0√
6
(β̃ − i2γ̃ − α̃β̃ + i2α̃γ̃)Ip0exp[i

ωτ

3
]exp[−ω2t20

12
]exp[−2τ 2

3t20
]

+
t0√
10

(β̃2 − 2γ̃2 − i3β̃γ̃)I2
p0exp[i

ωτ

5
]exp[−ω2t20

20
]exp[−4τ 2

5t20
] + ...

}

= Es0
t0√
2
exp[iωτ ]exp[−ω2t20

4
]
{
1 −

[ α̃

2
+

1√
3
Ip0

×exp[−i
2ωτ

3
]exp[

ω2t20
6

]exp[−2τ 2

3t20
](β̃ − i2γ̃)

]
+

[ α̃2

8

+
1√
3
Ip0exp[−i

2ωτ

3
]exp[

ω2t20
6

]exp[−2τ 2

3t20
](α̃β̃ − i2α̃γ̃)

+
1√
5
I2
p0exp[−i

4ωτ

5
]exp[

ω2t20
5

]exp[−4τ 2

5t20
](β̃2 − 2γ̃2 − i3β̃γ̃)

]

+...
}

(2.38)

and

∣∣∣F
[
Es(1, t̂)

]∣∣∣
2

= E2
s0

t20
2

e−(ωt0)2/2
{
1 − 2Re

[ α̃

2
+

1√
3
Ip0

×exp[−i
2ωτ

3
]exp[

ω2t20
6

]exp[−2τ 2

3t20
](β̃ − i2γ̃)

]

+2Re
[ α̃2

8
+

1√
3
Ip0exp[−i

2ωτ

3
]exp[

ω2t20
6

]exp[−2τ 2

3t20
](α̃β̃ − i2α̃γ̃)

+
1√
5
I2
p0exp[−i

4ωτ

5
]exp[

ω2t20
5

]exp[−4τ 2

5t20
](β̃2 − 2γ̃2 − i3β̃γ̃)

]

+
[ α̃

2
+

1√
3
Ip0exp[−i

2ωτ

3
]exp[

ω2t20
6

]exp[−2τ 2

3t20
](β̃ − i2γ̃)

]

[ α̃

2
+

1√
3
Ip0exp[i

2ωτ

3
]exp[

ω2t20
6

]exp[−2τ 2

3t20
](β̃ + i2γ̃)

]
+ ...

}

= E2
s0

t20
2

e−(ωt0)2/2
{
1 − α̃ +

α̃2

2
+

2√
3
Ip0exp[

ω2t20
6

]exp[−2τ 2

3t20
]

×
[
2(1 − 3

2
α̃)γ̃ sin(

2ωτ

3
) − (1 − 3

2
α̃)β̃ cos(

2ωτ

3
)
]

+
2√
5
I2
p0exp[

ω2t20
5

]exp[−4τ 2

5t20
]
[
(β̃2 − 2γ̃2) cos(

4ωτ

5
) − 3β̃γ̃ sin(

4ωτ

5
)
]

+
4

3
I2
p0exp[

ω2t20
3

]exp[−4τ 2

3t20
](

β̃2

4
+ γ̃2) + ...

}
(2.39)
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Since

∣∣∣F
[
Es(0, t̂)

]∣∣∣
2

= E2
s0

t20
2

e−(ωt0)2/2 (2.40)

From Eqn. 2.26 we have

∆T

T
=

{
− α̃ +

α̃2

2
+

2√
3
Ip0exp[

ω2t20
6

]exp[−2τ 2

3t20
]

×
[
2(1 − 3

2
α̃)γ̃ sin(

2ωτ

3
) − (1 − 3

2
α̃)β̃ cos(

2ωτ

3
)
]

+
2√
5
I2
p0exp[

ω2t20
5

]exp[−4τ 2

5t20
]
[
(β̃2 − 2γ̃2) cos(

4ωτ

5
) − 3β̃γ̃ sin(

4ωτ

5
)
]

+
4

3
I2
p0exp[

ω2t20
3

]exp[−4τ 2

3t20
](

β̃2

4
+ γ̃2) + ...

}
(2.41)

This expression reduces to Eqn. 2.7 when α̃ = 0 and only the lowest order terms

of β̃ and γ̃ are kept. Note in the above derivation the center frequency has been

shifted to 0 (we have taken out the carrier frequency) thus ω0 = 0 and ω = δ is

frequency detuning.

We have derived the general analytical expression for a SRTBC trace and an

approximate algebraic expression for the SRTBC trace with Gaussian pulses up

to second order of α̃, β̃ and γ̃. In the next section, we will examine the intensity

dependence (i.e. the dependence on Ip0 of the SRTBC signal size.) We will also

compare the approximate expression with the direct numerical calculation from

Eqn. 2.11.

2.3 Comparison of linear approximation, second-order ap-

proximation and numerical simulation

While the approximate expressions derived in the last section are convenient and in

general more transparent than the numerical simulation, as we will see very soon,
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these expressions become invalid and introduce large errors as the nonlinear phase

shift ∆φNL becomes large. Under these conditions, numerical simulation must be

used.

It is straightforward to simulate Eqn. 2.11. Fourth-order Runge-Kutta method

is used to evaluate the propagation of the pulses. The Pulse intensity profile and

phase function after propagation can be calculated and these can then be used

to obtain the SRTBC signal trace. We have included the source code used in

this work in the appendix (the source code is a generalized version including the

higher-order nonlinearities, which will be discussed in the next chapter). For a

given set of simulation parameters α̃, β̃, and γ̃, a two-dimensional data matrix can

be obtained. Fig. 2.4 and Fig. 2.5 show such a data matrix. One coordinate of

the data matrix is the time delay between the pump- and probe-beam, the other

coordinate is the frequency detuning. A SRTBC signal trace is obtained through

spectrally selecting a specific frequency component and a typical bipolar signal

trace is obtained. This is achieved using a monochromater in actual experiments.

Some important features of the SRTBC trace are evident in Fig. 2.4 and Fig. 2.5.

In general, the larger the detuning, the larger the signal size. This characteris-

tic is also evident in both the linear approximate expression and second-order

approximate expression derived in the previous section. As in both expressions,

factors such as exp(δ2t20/6) are present. Another interesting general property of

the SRTBC signal trace is its invariance under the transformation:

δ → −δ

τ → −τ. (2.42)

Again, one can also see this from both approximate expressions derived in the last

section. More generally, this is true for any initial pulse profile symmetric in time.
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Detuning

Figure 2.4: A two-dimensional data matrix of SRTBC. As indicated in the figure,

the simulation parameters are α̃ = 0, β̃ = 0, γ̃ = 0.05, and Ip0 = 1. This

corresponds to a nonlinear phase shift ∆φNL = 0.05. The detuning is in the unit

of FWHM PSD. The time delay is in the unit of half-width at (1/e)-maximum of

the intensity profile. A SRTBC signal trace can be obtained from sectioning the

data matrix along a fixed detuning.
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Detuning

Figure 2.5: Another two-dimensional data matrix of SRTBC. Here, the simulation

parameters are α̃ = 0, β̃ = 0, γ̃ = 0.3, and Ip0 = 1. This corresponds to a nonlinear

phase shift ∆φNL = 0.3. Similar to Fig. 2.4, the detuning is in the unit of FWHM

PSD. The time delay is in the unit of half-width at (1/e)-maximum of the intensity

profile.
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To prove this, assume that the probe beam electric field in time after propagation

is Ψ(t̂, τ), where t̂ and τ are time and delay respectively. The SRTBC signal trace

is then related to the spectrum of the probe-beam, which is

∫
Ψ(t̂, τ)eiωt̂dt̂, (2.43)

and this is invariant under the transformation Eqn. 2.42 if Ψ(−t̂,−τ) = Ψ(t̂, τ).

From the exact expression for the probe-beam field Eqn. 2.25 we can see that this

condition can be satisfied as long as the initial pulse profile is symmetric in time,

such as with an unchirped Gaussian pulse.

Both Fig. 2.4 and Fig. 2.5 show the typical two-dimensional data matrix of

SRTBC. The difference between these two is the magnitude of the nonlinearity,

the magnitude of the nonlinear phase shift the propagation generates. In Fig. 2.4,

the nonlinear phase shift is 0.05, and in Fig. 2.5, it is 0.3. One can see from Fig. 2.5

that, as the nonlinear phase shift increases, the shape of the signal does not just

scale up proportionally. Noticeable distortion is evident in Fig. 2.5. This is an

indication that the linear approximate expression breaks down when the nonlinear

phase shift exceeds a certain limit.

More detailed comparison can be done by restricting ourselves to a certain

spectral component of the data, i.e. for a fixed detuning. This is illustrated in

Fig. 2.6 (with nonlinear phase shift 0.05), and Fig 2.7 (with nonlinear phase shift

0.5). The detuning in both figures is 1 full-width at half-maximum (FWHM) of

the power spectrum density (PSD). It is clear that in Fig. 2.6, both linear and

second-order approximate expressions agree with the direct numerical simulation

very well. On the other hand, as the nonlinear phase shift becomes larger (beyond

∼ 0.1), the linear approximate expression quickly breaks down and the second-

order approximate expression also starts to deviate from the numerical simulation,
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Figure 2.6: SRTBC signal traces produced by a linear approximate expression, a

second-order approximate expression, and numerical simulation. The parameters

used are α̃ = 0, β̃ = 0.02, γ̃ = 0.05, and Ip0 = 1. The corresponding nonlinear

phase shift ∆φNL = 0.05. The frequency detuning is 1 FWHM PSD, and the

time dealy is in the unit of half-width at (1/e)-maximum of the field profile. The

approximate expressions agree with numerical simulation well.
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Figure 2.7: SRTBC signal traces produced by a linear approximate expression, a

second-order approximate expression, and numerical simulation with parameters

of 10 times the magnitude of those in Fig. 2.6. The parameters used are α̃ = 0,

β̃ = 0.2, γ̃ = 0.5, and Ip0 = 1. The corresponding nonlinear phase shift ∆φNL

is 0.5. The frequency detuning is 1 FWHM PSD, and the time dealy is in the

unit of half-width at (1/e)-maximum of the field profile. It is clear that linear

approximate expression breaks down. On the contrary, second-order approximate

expression agrees with numerical simulation relatively well.
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as shown in Fig. 2.7.

Although in general the second-order approximate expression holds up to larger

nonlinear phase shifts (as is evident in Fig. 2.7), we expect this expression to

break down as the nonlinear phase shift continues to increase. Figs. 2.8, 2.9,

2.10 and 2.11 show some systematic comparison of the SRTBC signal trace

peak/valley magnitude and overall signal size (peak-valley) magnitude generated

using the linear approximate expression, second-order approximate expression and

direct numerical simulation. The frequency detuning in Fig. 2.8 and Fig. 2.9 is

1.5 FWHM PSD, and in Fig. 2.10 and Fig. 2.11 it is 0.5 FWHM PSD. From

these figures, we can see that indeed the second-order approximate expression is

applicable for a larger range of nonlinear phase shift than the linear approximate

expression. However, both approximate expressions generate significant error for

nonlinear phase shifts larger than ∼ 0.3. It is also interesting to note that for larger

frequency detuning, the deviation is more significant. This is expected, since the

sensitivity of the process is determined by factors such as exp(δ2t20/6).

Another significant implication from these observation is that in order to isolate

the possible higher-order nonlinear effects (such as χ(5), χ(7)), one can not rely on

the linear or any approximate expression. Since the signal magnitude does not

increase proportionally with the increase of the pulse intensity (thus the nonlinear

phase shift), a measured signal intensity dependence deviating from a straight line

itself is no guarantee that higher-order nonlinear effects are present. One will need

to compare the measured result with the numerical simulated result to determine

if higher-order nonlinear effects are observed. Moreover, if higher-order nonlinear

effects are indeed present, in order to determine the magnitude of these effects, a

more complicated model including higher-order nonlinearities will be needed. This
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Figure 2.8: Nonlinear phase shift (and thus intensity) dependence of the SRTBC

signal trace peak/valley magnitude predicted by a linear approximate expression, a

second-order approximate expression, and numerical simulation. The frequency de-

tuning is 1.5 FWHM PSD. While the second-order approximate expression agrees

with the numerical simulation better than linear approximate simulation, at large

nonlinear phase shift, the deviation of both approximate expressions is significant.
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Figure 2.9: Nonlinear phase shift dependence of the SRTBC signal size (peak-

valley). The frequency detuning is 1.5 FWHM PSD. The same data in Fig. 2.8 is

presented here differently, with the SRTBC trace peak-valley amplitude plotted.
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Figure 2.10: Nonlinear phase shift (and thus intensity) dependence of the SRTBC

signal trace peak/valley magnitude predicted by a linear approximate expression, a

second-order approximate expression, and numerical simulation. The frequency de-

tuning is 0.5 FWHM PSD. While the second-order approximate expression agrees

with the numerical simulation well up to a nonlinear phase shift ∼ 0.5, at large

nonlinear phase shift, the deviation of both approximate expressions become sig-

nificant.
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Figure 2.11: Nonlinear phase shift dependence of the SRTBC signal size (peak-

valley). The frequency detuning is 0.5 FWHM PSD. The same data in Fig. 2.10 is

presented here in differently, with the SRTBC trace peak-valley amplitude plotted.
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is the main cause that motivates the work described in the next chapter.

2.4 Conclusions

We have derived the exact analytical expression for SRTBC signal traces with ar-

bitrary initial pump-beam and probe-beam profile and phase in media with linear

properties and instantaneous third-order nonlinearities (χ(3)). Approximative ex-

pressions are also derived from the exact analytical expression. Both linear and

second-order approximate expressions are used to predict SRTBC signal traces.

The comparison of these predictions with the numerical simulation shows that the

linear approximate expression breaks down quickly as the nonlinear phase shift

increases and becomes larger than ∼ 0.1. Although second-order approximate ex-

pression in general works over a larger range of nonlinear phase shift, it breaks

down at a nonlinear phase shift ∼ 0.5. From these observations, we conclude that

in order to isolate the existence of higher-order nonlinearities such as χ(5) and χ(7),

one can not rely solely on the prediction from the approximate expressions, since

the observation of higher-order nonlinearities in general requires measurements

with high intensity, which results in large nonlinear-phase shifts and the approx-

imate expressions break down. Numerical simulations will be required in these

cases. Moreover, in order to determine the magnitude of higher-order nonlinear-

ities, a more complicated analytical model which includes higher-order nonlinear

effects is needed. In the next chapter, based on the same SRTBC technique, we

will develop such a model and extend the technique into the regime of higher-order

nonlinearities.



Chapter 3

Measurement of fifth- and seventh-order

nonlinearities of glasses
We extend the spectrally-resolved two-beam coupling to the measurements of

higher-order nonlinearities. The original theoretical model is generalized to in-

clude higher-order nonlinear effects. Based on the generalization, we perform the

measurement of higher-order nonlinearities of several glasses and report the ob-

servation of saturation of the cubic optical nonlinearity. Fifth- and seventh-order

nonlinearities are required to account for the measured nonlinear phase shifts. The

observation of saturable nonlinear indices accompanied by only moderate nonlinear

absorption will be relevant to some applications.

3.1 Introduction

The nonlinear optical properties of materials are of particular interest for telecom-

munications, high power lasers, and pulse-propagation applications. At high in-

tensities, nonlinearities above the cubic one, χ(3), become important and have

to be included to describe the optical response. In some cases (e.g. ultrafast

optical switching) higher-order nonlinear effects can cause problems. For other

applications higher-order nonlinearities are desired: e.g. the formation of stable

multi-dimensional optical solitons requires saturation of the instantaneous Kerr

nonlinearity [13, 14]. A better understanding of higher-order nonlinearities in ma-

terials is then crucial.

The nonlinearities of glasses have received considerable attention, mainly in

40
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the context of optical switching [15, 16]. In particular, the saturation of χ(3)

(equivalently, the presence of higher-order nonlinearities χ(5), χ(7),...) recently

reported in chalcogenide glasses [17] also suggests that materials appropriate to

applications requiring higher-order nonlinearities exist. However, the materials

were investigated under the condition of large reduced-photon energy (hν/Eg ∼

0.75, where hν is the laser photon energy and Eg is the linear absorption edge) and

therefore exhibit large nonlinear absorption [17]. The absorption likely precludes

the utility of these materials in applications. Nevertheless, it is possible that the

saturation of χ(3) could also occur at smaller reduced-photon energy, where the

nonlinear absorption is moderate. This motivates the measurements of higher-

order nonlinearities at other reduced-photon energies.

Here we report measurements of higher-order nonlinearities in materials with

a range of reduced-photon energies (hν/Eg = 0.25 − 0.76). Significant saturation

of χ(3) is observed in materials with large reduced-photon energy (∼ 0.76) as well

as in materials with moderate reduced-photon energy (∼ 0.5). The saturation is

also observed to increase with the reduced-photon energy. In general, a negative

χ(5) is needed to account for the saturation of χ(3), and when the saturation is very

strong, a self-focusing χ(7) is also needed.

The experimental technique we apply in this work is spectrally-resolved two-

beam coupling (SRTBC) [11]. SRTBC uses a standard pump-probe setup with

the addition of a monochromator to measure the pump-induced shift of the probe

spectrum. The sample is kept at the intersection of the beams, and the energy

transmitted through the monochromator at a fixed detuning from the center of

the spectrum is monitored. The relative transmittance as a function of the delay

between the pump beam and the probe beam is recorded [11]. In the absence
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of nonlinear absorption, the signal has a bipolar shape, as shown in the inset of

Fig. 3.1. For materials with nonlinear index n2 and negligible higher-order non-

linearity, the analytical approximation shows that the signal magnitude is linearly

proportional to the pump-beam intensity Ip if the nonlinear phase shift is small

(∆φ ≡ (2π/λ)n2IpL < 0.1, where L is the interaction length) [11]. To observe

higher-order effects, we expose the materials to higher intensities and thus ∆φ can

exceed 0.1. Under these conditions the approximation is no longer valid and nu-

merical evaluation is needed even for systems with only χ(3). Indeed, as shown in

Fig. 3.1 the numerical calculation shows significant deviation from the small-phase

shift approximation for large ∆φ. Since higher-order nonlinearities manifest them-

selves as deviations from the cubic nonlinear response, a first step in extending

the analysis of SRTBC to higher-order nonlinearities is to numerically generate

the correct dependence of the signal on intensity for the cubic nonlinearity alone.

The second step is to include the higher-order nonlinearities in the modelling of

the SRTBC signal.

3.2 Spectrally-resolved two-beam coupling with high-order

nonlinearities

In this section, we present the detailed derivation of the SRTBC governing equa-

tions with higher-order nonlinearities included. These equations are used to per-

form numerical simulations and obtain the theoretical SRTBC traces. The simula-

tion results are then used to analyze the experimental measurements and determine

the higher-order nonlinearities in the samples measured.

We start by considering the electric field for the pump- and the probe- beam
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Figure 3.1: Numerical calculation is used to determine the dependence of the

signal on pump-beam intensity in the presence of χ(3) alone. Inset: SRTBC signals

calculated for the indicated nonlinear phase shifts. The time delay is in the units

of the pulse duration.
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Ep(z, t) and Es(z, t), these can be expressed as the following:

Ep(z, t) =
1

2

{
Ap(z, t)exp

[
i(βpz − ωpt)

]
+ c.c.

}

Es(z, t) =
1

2

{
As(z, t)exp

[
i(βsz − ωst)

]
+ c.c.

}
, (3.1)

and

E(z, t) = Ep(z, t) + Es(z, t). (3.2)

Here ωp and ωs are the frequency for pump- and probe-beam respectively, and

βp =
ωpn0R(ωp)

c

βs =
ωsn0R(ωs)

c
, (3.3)

where n0R = Re[n0], the real part of the complex linear refractive index. Corre-

spondingly, in frequency domain, we can express the field as:

Ẽp(z, ω) =
1

2

[
ap(z, ω) + a∗p(z,−ω)

]

Ẽs(z, ω) =
1

2

[
as(z, ω) + a∗s (z,−ω)

]

(3.4)

Where the Fourier transform has

ap(z, ω) = F

{
Ap(z, t)exp

[
i(βpz − ωpt)

]}

as(z, ω) = F

{
As(z, t)exp

[
i(βsz − ωst)

]}
, (3.5)

with the Fourier transform defined as

F
{
h(t)

}
≡ 1√

2π

∫
∞

−∞

h(t)eiωtdt = h̃(ω). (3.6)

The corresponding inverse transform is

F−1
{
h̃(ω)

}
≡ 1√

2π

∫
∞

−∞

h̃(ω)e−iωtdω = h(t). (3.7)



45

From the above, we can express the linear polarization and nonlinear polarization

in frequency domain as (assuming isotropic response):

P̃L(z, ω) = ǫ0χ
(1)(ω)Ẽ(z, ω)

P̃
(n)

NL (z, ω1 + ω2 + ... + ωn) = ǫ0χ
(n)(ω1, ω2, ..., ωn)Ẽ(z, ω1)Ẽ(z, ω2)...Ẽ(z, ωn)

(3.8)

In the time domain, the corresponding polarization is

PL(z, t) = F−1
{
P̃L(z, ω)

}

PNL
(n)(z, t) = F−1

{
P̃

(n)
NL (z, ω)

}
(3.9)

Or more explicitly, it is

PL(z, t) =
1√
2π

∫
∞

−∞

ǫ0χ
(1)(ω)Ẽ(z, ω)e−iωtdω

=
1

2

1√
2π

∫
∞

−∞

ǫ0χ
(1)(ω)(ap(z, ω) + a∗p(z,−ω)

+as(z, ω) + a∗s (z,−ω))e−iωtdω (3.10)

and

PNL
(n)(z, t) = (

1√
2π

)n
∫

∞

−∞

...
∫

∞

−∞

ǫ0χ
(n)(ω1, ..., ωn)

×Ẽ(z, ω1)...Ẽ(z, ωn)exp
[
−i(ω1 + ... + ωn)t

]
dω1...dωn

= (
1

2
)n(

1√
2π

)n
∫

∞

−∞

...
∫

∞

−∞

ǫ0χ
(n)(ω1, ..., ωn)

×
[
ap(z, ω1) + a∗p(z,−ω1) + as(z, ω1)

+a∗s (z,−ω1)
]
...

[
ap(z, ωn) + a∗p(z,−ωn)

+as(z, ωn) + a∗s (z,−ωn)
]
exp

[
−i(ω1 + ... + ωn)t

]

×dω1...dωn. (3.11)

Note that in the derivation above we have only assumed that the response is

isotropic. To simplify the equations, here we introduce another assumption: the
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spectral width compared with the range where the material has significant disper-

sion is small. More specifically, we assume that

χ(1)(ωp − ∆p) ∼= χ(1)(ωp) ∼= χ(1)(ωp + ∆p)

χ(1)(ωs − ∆s) ∼= χ(1)(ωs) ∼= χ(1)(ωs + ∆s)

χ(n)(ω1, ω2, ..., ωk = ωp − ∆p, ..., ωn) ∼= χ(n)(ω1, ω2, ..., ωk = ωp, ..., ωn)

∼= χ(n)(ω1, ω2, ..., ωk = ωp + ∆p, ..., ωn)

χ(n)(ω1, ω2, ..., ωk = ωs − ∆s, ..., ωn) ∼= χ(n)(ω1, ω2, ..., ωk = ωs, ..., ωn)

∼= χ(n)(ω1, ω2, ..., ωk = ωs + ∆s, ..., ωn) (3.12)

where ωp and ωs are the center frequency of the pump- and the probe-field respec-

tively, as defined in Eqn. 3.1, and ∆p and ∆s are the bandwidth of the pump- and

the probe-field respectively. Using Eqn. 3.12, we can simplify Eqn. 3.10 to get

PL(z, t) ∼= 1

2

1√
2π

ǫ0χ
(1)(ωp)

∫
∞

−∞

ap(z, ω)e−iωtdω

+
1

2

1√
2π

ǫ0χ
(1)(−ωp)

∫
∞

−∞

a∗p(z,−ω)e−iωtdω

+
1

2

1√
2π

ǫ0χ
(1)(ωs)

∫
∞

−∞

as(z, ω)e−iωtdω

+
1

2

1√
2π

ǫ0χ
(1)(−ωs)

∫
∞

−∞

a∗s (z,−ω)e−iωtdω

=
1

2
ǫ0χ

(1)(ωp)Ap(z, t)exp
[
i(βpz − ωpt)

]

+
1

2
ǫ0χ

(1)(−ωp)A
∗

p(z, t)exp
[
− i(βpz − ωpt)

]

+
1

2
ǫ0χ

(1)(ωp)As(z, t)exp
[
i(βsz − ωst)

]

+
1

2
ǫ0χ

(1)(−ωp)A
∗

s (z, t)exp
[
− i(βsz − ωst)

]

=
1

2
ǫ0

{
χ(1)(ωp)Ap(z, t)exp

[
i(βpz − ωpt)

]

+χ(1)(ωs)As(z, t)exp
[
i(βsz − ωst)

]}
+ c.c.

(3.13)
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Note that we have used the relation χ(1)(ω) = χ(1)∗(−ω∗), and for real ω, it can be

further simplified to χ(1)(ω) = χ(1)∗(−ω). For nonlinear polarization, we have

PNL
(n)(z, t) ∼= (

1

2
)n(

1√
2π

)n
∑

ω̂1; f1

...
∑

ω̂n; fn

ǫ0χ
(n)(ω̂1, ..., ω̂n)

×
∫

∞

−∞

...
∫

∞

−∞

f1(z, ω1)...fn(z, ωn)exp
[
−i(ω1 + ... + ωn)t

]
dω1...dωn

= (
1

2
)n

∑

ω̂1; g1

...
∑

ω̂n; gn

ǫ0χ
(n)(ω̂1, ..., ω̂n)g1(z, t)...gn(z, t)

×exp
[
−i(ω̂1 + ... + ω̂n)t

]

where

ω̂k =
{
ωp,−ωp, ωs,−ωs

}

fk(z, ω) =
{
ap(z, ω), a∗p(z,−ω), as(z, ω), a∗s (z,−ω)

}

gk(z, t) =

{
Ap(z, t)exp[iβpz], A

∗

p(z, t)exp[−iβpz]

, As(z, t)exp[iβsz], A
∗

s (z, t)exp[−iβsz]

}

for k = 1, 2, ..., n (3.14)

Note that from the term exp[−i(ω̂1 + ... + ω̂n)t] we can see that Eqn. 3.14 in-

cludes second harmonic generation (±2ωp or ±2ωs), difference frequency genera-

tion (±(ωp − ωs)), and high harmonic generation processes. Directly substituting

Eqn. 3.14 into Maxwell’s equations is difficult. Fortunately, there are more sim-

plifications that can be made: (i) Consider only the case where the generation of

wavelength components other than the original pump beam and prob beam ωp

and ωs is negligible. In other words, we consider the case where in Eqn. 3.14,
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only those χ(n)(ω̂1, ..., ω̂n) with ω̂1 + ... + ω̂n = ±ωp or ω̂1 + ... + ω̂n = ±ωs are

significant. Physically, this means that the material is not phase-matched for any

nonlinear generation processes. With this assumption, only nonlinear polarization

with order n = 2m + 1 remain. This assumption helps to simply the equation:

PNL
(2m+1)(z, t) = (

1

2
)2m+1

m∑

l=0

C2m+1
l+1 C2m−l

l C
2(m−l)
m−l

×
{

ǫ0χ
(2m+1)(ωp, ..., ωp︸ ︷︷ ︸

l+1

,−ωp, ...,−ωp︸ ︷︷ ︸
l

, ωs, ..., ωs︸ ︷︷ ︸
m−l

,−ωs, ...,−ωs︸ ︷︷ ︸
m−l

)

×Ap|Ap|2l|As|2(m−l)exp
[
i(βpz − ωpt)

]

+ǫ0χ
(2m+1)(ωs, ..., ωs︸ ︷︷ ︸

l+1

,−ωs, ...,−ωs︸ ︷︷ ︸
l

, ωp, ..., ωp︸ ︷︷ ︸
m−l

,−ωp, ...,−ωp︸ ︷︷ ︸
m−l

)

×As|As|2l|Ap|2(m−l)exp
[
i(βsz − ωst)

]}

+c.c. (3.15)

Note that intrinsic permutation symmetry has been used to arrive at the above

expression. A simplification can also be made if we assume that the ratio of pump

intensity to probe intensity is large, i.e. Ap ≫ As, we could keep up to only the

terms linear in As. Eqn. 3.14 is simplified to

PNL
(2m+1)(z, t) = (

1

2
)2m+1

{
C2m+1

m+1 Cm
mǫ0χ

(2m+1)(ωp, ..., ωp︸ ︷︷ ︸
m+1

,−ωp, ...,−ωp︸ ︷︷ ︸
m

)

×Ap|Ap|2mexp
[
i(βpz − ωpt)

]

+C2m+1
1 C2m

m ǫ0χ
(2m+1)(ωs, ωp, ..., ωp︸ ︷︷ ︸

m

,−ωp, ...,−ωp︸ ︷︷ ︸
m

)

×As|Ap|2mexp
[
i(βsz − ωst)

]}
+ c.c.

= (
1

2
)2m+1

{
(2m + 1)!

(m + 1)!m!
ǫ0χ

(2m+1)(ωp, ..., ωp︸ ︷︷ ︸
m+1

,−ωp, ...,−ωp︸ ︷︷ ︸
m

)

×Ap|Ap|2mexp
[
i(βpz − ωpt)

]
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+
(2m + 1)!

m!m!
ǫ0χ

(2m+1)(ωs, ωp, ..., ωp︸ ︷︷ ︸
m

,−ωp, ...,−ωp︸ ︷︷ ︸
m

)

×As|Ap|2mexp
[
i(βsz − ωst)

]}
+ c.c. (3.16)

Now we have the wave equation (for nonmagnetic system):

∂2

∂z2
E(z, t) − 1

c2

∂2

∂t2
E(z, t) − µ0

∂2

∂t2
P(z, t) = 0 (3.17)

Where P = PL + PNL.

Using Eqn. 3.13 and Eqn. 3.16, we have

1

2

∂2

∂z2

{
Apexp

[
i(βpz − ωpt)

]
+ Asexp

[
i(βsz − ωst)

]}

−1

2

1

c2

∂2

∂t2

{
Apexp

[
i(βpz − ωpt)

]
+ Asexp

[
i(βsz − ωst)

]}

−1

2
ǫ0µ0

∂2

∂t2

{
χ(1)(ωp)Apexp

[
i(βpz − ωpt)

]
+ χ(1)(ωs)Asexp

[
i(βsz − ωst)

]}

−ǫ0µ0
∂2

∂t2

∞∑

m=1

(
1

2
)2m+1

{
(2m + 1)!

(m + 1)!m!
χ(2m+1)(ωp, ..., ωp︸ ︷︷ ︸

m+1

,−ωp, ...,−ωp︸ ︷︷ ︸
m

)

×Ap|Ap|2mexp
[
i(βpz − ωpt)

]

+
(2m + 1)!

m!m!
χ(2m+1)(ωs, ωp, ..., ωp︸ ︷︷ ︸

m

,−ωp, ...,−ωp︸ ︷︷ ︸
m

)

×As|Ap|2mexp
[
i(βsz − ωst)

]}
+ c.c. = 0 (3.18)

The above equation can be decomposed into two equations by separating different

time dependence ωp and ωs

1

2

∂2

∂z2

{
Apexp

[
i(βpz − ωpt)

]}
− 1

2

1

c2

∂2

∂t2

{
Apexp

[
i(βpz − ωpt)

]}

−1

2
ǫ0µ0

∂2

∂t2

{
χ(1)(ωp)Apexp

[
i(βpz − ωpt)

]}

−ǫ0µ0
∂2

∂t2

∞∑

m=1

(
1

2
)2m+1

{
(2m + 1)!

(m + 1)!m!
χ(2m+1)(ωp, ..., ωp︸ ︷︷ ︸

m+1

,−ωp, ...,−ωp︸ ︷︷ ︸
m

)

×Ap|Ap|2mexp
[
i(βpz − ωpt)

]}
= 0 (3.19)
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and

1

2

∂2

∂z2

{
Asexp

[
i(βsz − ωst)

]}
− 1

2

1

c2

∂2

∂t2

{
Asexp

[
i(βsz − ωst)

]}

−1

2
ǫ0µ0

∂2

∂t2

{
χ(1)(ωs)Asexp

[
i(βsz − ωst)

]}

−ǫ0µ0
∂2

∂t2

∞∑

m=1

(
1

2
)2m+1

{
(2m + 1)!

m!m!
χ(2m+1)(ωs ωp, ..., ωp︸ ︷︷ ︸

m

,−ωp, ...,−ωp︸ ︷︷ ︸
m

)

×As|Ap|2mexp
[
i(βsz − ωst)

]}
= 0 (3.20)

We now introduce the slowly varying envelope approximation (SVEA). More specif-

ically, this approximation allows as to neglect the higher order differential terms on

the “envelop function”, such as (∂2Ap/∂z2), (∂2Ap/∂t2), (∂2As/∂z2), (∂2As/∂t2),

(∂Ap/∂z)2, (∂Ap/∂t)2, (∂As/∂z)2, (∂As/∂t)2, (∂Ap/∂z)(∂As/∂z) ....etc. I.e., we

keep only up to the order of (∂ · /∂z) and (∂ · /∂t), where · is any of the Ap, As,

A∗

p and A∗

s . With this approximation, and after some straightforward manipula-

tions, we have:

−1

2
β2

pAp + iβp
∂Ap

∂z
+

1

2

ω2
p

c2
Ap +

iωp

c2

∂Ap

∂t
+

1

2

ω2
p

c2
χ(1)(ωp)Ap +

iωp

c2
χ(1)(ωp)

∂Ap

∂t

+(
ω2

p

c2
+ 2

iωp

c2

∂

∂t
)

∞∑

m=1

(
1

2
)2m+1

[ (2m + 1)!

(m + 1)!m!
χ(2m+1)(ωp, ..., ωp︸ ︷︷ ︸

m+1

,−ωp, ...,−ωp︸ ︷︷ ︸
m

)

×Ap|Ap|2m
]

= 0 (3.21)

and

−1

2
β2

s As + iβs
∂As

∂z
+

1

2

ω2
s

c2
As +

iωs

c2

∂As

∂t
+

1

2

ω2
s

c2
χ(1)(ωs)As +

iωs

c2
χ(1)(ωs)

∂As

∂t

+(
ω2

s

c2
+ 2

iωs

c2

∂

∂t
)

∞∑

m=1

(
1

2
)2m+1

[(2m + 1)!

m!m!
χ(2m+1)(ωs ωp, ..., ωp︸ ︷︷ ︸

m

,−ωp, ...,−ωp︸ ︷︷ ︸
m

)

×As|Ap|2m
]

= 0 (3.22)

Further rearrange the equations:

iβp
∂Ap

∂z
=
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1

2

{
β2

p −
ω2

p

c2

[
1 + χ(1)(ωp) +

∞∑

m=1

(
1

2
)2m (2m + 1)!

(m + 1)!m!
χ(2m+1)(ωp)|Ap|2m

]}
Ap

− iωp

c2

∂

∂t

{[
1 + χ(1)(ωp) +

∞∑

m=1

(
1

2
)2m (2m + 1)!

(m + 1)!m!
χ(2m+1)(ωp)|Ap|2m

]
Ap

}

(3.23)

and

iβs
∂As

∂z
=

1

2

{
β2

s −
ω2

s

c2

[
1 + χ(1)(ωs) +

∞∑

m=1

(
1

2
)2m (2m + 1)!

m!m!
χ(2m+1)(ωs)|Ap|2m

]}
As

− iωs

c2

∂

∂t

{[
1 + χ(1)(ωs) +

∞∑

m=1

(
1

2
)2m (2m + 1)!

m!m!
χ(2m+1)(ωs)|Ap|2m

]
As

}

(3.24)

Note that we have used the shorthand

χ(2m+1)(ωp) ≡ χ(2m+1)(ωp, ..., ωp︸ ︷︷ ︸
m+1

,−ωp, ...,−ωp︸ ︷︷ ︸
m

)

χ(2m+1)(ωs) ≡ χ(2m+1)(ωs ωp, ..., ωp︸ ︷︷ ︸
m

,−ωp, ...,−ωp︸ ︷︷ ︸
m

)

(3.25)

Using Eqn. 3.3 to express the above equations in terms of linear refractive index

n0:

i
∂Ap

∂z
− 1

2

ωp(n0I(ωp))
2

cn0R(ωp)
Ap + i

(n0(ωp))
2

cn0R(ωp)

∂Ap

∂t
=

−1

2

[
i
2ωpn0I(ωp)

c
+

∞∑

m=1

(
1

2
)2m (2m + 1)!

(m + 1)!m!

ωp

cn0R(ωp)

×χ(2m+1)(ωp)|Ap|2m
]
Ap − i

∂

∂t

[ ∞∑

m=1

(
1

2
)2m (2m + 1)!

(m + 1)!m!

×χ(2m+1)(ωp)

cn0R(ωp)
|Ap|2mAp

]
(3.26)

and

i
∂As

∂z
− 1

2

ωs(n0I(ωs))
2

cn0R(ωs)
As + i

(n0(ωs))
2

cn0R(ωs)

∂As

∂t
=
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−1

2

[
i
2ωsn0I(ωs)

c
+

∞∑

m=1

(
1

2
)2m (2m + 1)!

m!m!

ωs

cn0R(ωs)

×χ(2m+1)(ωs)|Ap|2m
]
As − i

∂

∂t

[ ∞∑

m=1

(
1

2
)2m (2m + 1)!

m!m!

×χ(2m+1)(ωs)

cn0R(ωs)
|Ap|2mAs

]
(3.27)

Where n0 = n0R + in0I =
√

1 + χ(1) is in general complex. We now further restrict

ourselves to the case where the effect of nonlinear responses is smaller than the lin-

ear response, as is true in most situations. This means in general the terms such as

χ(2m+1)(ωp)|Ap|2m(∂Ap/∂t) and χ(2m+1)(ωs)|As|2m(∂As/∂t) can be neglected when

compared with other terms, due to the simultaneous smallness of χ(2m+1)(ωp) (or

χ(2m+1)(ωs) )and ∂Ap/∂t (or ∂Ap/∂t). This allows us to rewrite the equations:

i
∂Ap

∂z
− 1

2

ωp(n0I(ωp))
2

cn0R(ωp)
Ap + i

(n0(ωp))
2

cn0R(ωp)

∂Ap

∂t
=

−1

2

[
i
2ωpn0I(ωp)

c
+

∞∑

m=1

(
1

2
)2m (2m + 1)!

(m + 1)!m!

ωp

cn0R(ωp)

×χ(2m+1)(ωp)|Ap|2m
]
Ap (3.28)

and

i
∂As

∂z
− 1

2

ωs(n0I(ωs))
2

cn0R(ωs)
As + i

(n0(ωs))
2

cn0R(ωs)

∂As

∂t
=

−1

2

[
i
2ωsn0I(ωs)

c
+

∞∑

m=1

(
1

2
)2m (2m + 1)!

m!m!

ωs

cn0R(ωs)

×χ(2m+1)(ωs)|Ap|2m
]
As (3.29)

Further simplification can be obtained by introducing a transform:

Ap = exp[−iθpz]Âp

θp =
ωp(n0I(ωp))

2

2cn0R(ωp)

As = exp[−iθsz]Âs

θs =
ωs(n0I(ωs))

2

2cn0R(ωs)
(3.30)
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The new equations are now:

i
∂Âp

∂z
+ i

(n0(ωp))
2

cn0R(ωp)

∂Âp

∂t
=

−1

2

[
i
2ωpn0I(ωp)

c
+

∞∑

m=1

(
1

2
)2m (2m + 1)!

(m + 1)!m!

ωp

cn0R(ωp)

×χ(2m+1)(ωp)|Âp|
2m]

Âp (3.31)

and

i
∂Âs

∂z
+ i

(n0(ωs))
2

cn0R(ωs)

∂Âs

∂t
=

−1

2

[
i
2ωsn0I(ωs)

c
+

∞∑

m=1

(
1

2
)2m (2m + 1)!

m!m!

ωs

cn0R(ωs)

×χ(2m+1)(ωs)|Âp|
2m]

Âs (3.32)

We can further assume that n0R ≫ n0I, as is true for transparent material. The

approximation (n0)
2/cn0R

∼= n0R/c then can be justified. Further with the defini-

tion (1/v) ≡ (n0R/c)(If the first order dispersion effect is taken into account, we

have (1/v) ≡ (n0R/c) + (ω/c)(dn0R/dω). This effect and the dispersion effects of

the nonlinearities can be accounted for during the derivation. It can be done by

expanding the susceptibility functions around ωs and ωp when evaluating Eqn. 3.10

and Eqn. 3.11. ), we have:

i
∂Âp

∂z
+ i

1

v(ωp)

∂Âp

∂t
= −1

2

[
i
2ωpn0I(ωp)

c

+
∞∑

m=1

(
1

2
)2m (2m + 1)!

(m + 1)!m!

ωp

cn0R(ωp)
χ(2m+1)(ωp)|Âp|

2m]
Âp (3.33)

and

i
∂Âs

∂z
+ i

1

v(ωs)

∂Âs

∂t
= −1

2

[
i
2ωsn0I(ωs)

c

+
∞∑

m=1

(
1

2
)2m (2m + 1)!

m!m!

ωs

cn0R(ωs)
χ(2m+1)(ωs)|Âp|

2m]
Âs (3.34)
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Using the notations:

α0 ≡ 2ωn0I

c

n̂2m ≡ 1

n0R

(2m + 1)!

22m+1(m + 1)!m!
Re[χ(2m+1)]

α̂2m ≡ ω

cn0R

(2m + 1)!

22m(m + 1)!m!
Im[χ(2m+1)]

m ≥ 1 (3.35)

the equations become:

i
∂Âp

∂z
+ i

1

v(ωp)

∂Âp

∂t
= −i

[1

2
α0(ωp) +

∞∑

m=1

1

2
α̂2m(ωp)|Âp|

2m]
Âp

−
∞∑

m=1

ωp

c
n̂2m(ωp)|Âp|

2m
Âp (3.36)

and

i
∂Âs

∂z
+ i

1

v(ωs)

∂Âs

∂t
= −i

[1

2
α0(ωs) +

∞∑

m=1

1

2
(m + 1)α̂2m(ωs)|Âp|

2m]
Âs

−
∞∑

m=1

ωs

c
(m + 1)n̂2m(ωs)|Âp|

2m
Âs (3.37)

The above equations could be decoupled into equations describing phase evolution

and amplitude evolution if we use the following transforms:

Âp ≡ Ψpexp[iφp]

Âs ≡ Ψsexp[iφs] (3.38)

The new equations become:

i
[
(

∂

∂z
+ i

∂φp

∂z
)Ψp +

1

v(ωp)
(

∂

∂t
+ i

∂φp

∂t
)Ψp

]

+i
[1

2
α0(ωp) +

∞∑

m=1

1

2
α̂2m(ωp)|Ψp|2m

]
Ψp

+
∞∑

m=1

ωp

c
n̂2m(ωp)|Ψp|2mΨp = 0 (3.39)
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and

i
[
(

∂

∂z
+ i

∂φs

∂z
)Ψs +

1

v(ωs)
(

∂

∂t
+ i

∂φs

∂t
)Ψs

]

+i
[1

2
α0(ωs) +

∞∑

m=1

1

2
(m + 1)α̂2m(ωs)|Ψp|2m

]
Ψs

+
∞∑

m=1

ωs

c
(m + 1)n̂2m(ωs)|Ψp|2mΨs = 0 (3.40)

Separate the real part and imaginary part, we get the equations:

∂Ψp

∂z
+

1

v(ωp)

∂Ψp

∂t
=

−
[1

2
α0(ωp) +

∞∑

m=1

1

2
α̂2m(ωp)|Ψp|2m

]
Ψp

∂φp

∂z
+

1

v(ωp)

∂φp

∂t
=

∞∑

m=1

ωp

c
n̂2m(ωp)|Ψp|2m

∂Ψs

∂z
+

1

v(ωs)

∂Ψs

∂t
=

−
[1

2
α0(ωs) +

∞∑

m=1

1

2
(m + 1)α̂2m(ωs)|Ψp|2m

]
Ψs

∂φs

∂z
+

1

v(ωs)

∂φs

∂t
=

∞∑

m=1

ωs

c
(m + 1)n̂2m(ωs)|Ψp|2m (3.41)

Since the intensity is proportional to the square of the field amplitude, i.e. Ip =

(1/2)n0R

√
ǫ0/µ0|Ψp|2 and Is = (1/2)n0R

√
ǫ0/µ0|Ψs|2, it is straightforward to rewrite

above equation as

∂Ip

∂z
+

1

v(ωp)

∂Ip

∂t
= −(α0(ωp) +

∞∑

m=1

α2m(ωp)I
m
p )Ip,

∂φp

∂z
+

1

v(ωp)

∂φp

∂t
=

ωp

c

∞∑

m=1

n2m(ωp)I
m
p ,

∂Is

∂z
+

1

v(ωs)

∂Is

∂t
= −(α0(ωs) +

∞∑

m=1

(m + 1)α2m(ωs)I
m
p )Is,

∂φs

∂z
+

1

v(ωs)

∂φs

∂t
=

ωs

c

∞∑

m=1

(m + 1)n2m(ωs)I
m
p , (3.42)

Note that:

α2m(ωp) ≡
2mα̂2m(ωp)

nm
0R(ωp)

(
µ0

ǫ0

)m/2
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n2m(ωp) ≡
2mn̂2m(ωp)

nm
0R(ωp)

(
µ0

ǫ0

)m/2

α2m(ωs) ≡
2mα̂2m(ωs)

nm
0R(ωp)

(
µ0

ǫ0

)m/2

n2m(ωs) ≡
2mn̂2m(ωs)

nm
0R(ωp)

(
µ0

ǫ0

)m/2

(3.43)

We have derived the SRTBC governing equations with higher-order nonlin-

earities present. In the derivation we have employed the slowly-varying envelope

approximation and neglected group-velocity dispersion (GVD). These equations

are used to calculate the signals produced by higher-order nonlinear processes

(Fig. 3.2 and Fig. 3.3) and as well as to extract the values of n2m and α2m by

fitting experimental data.

3.3 Experimental results

In the case where the pump-beam frequency is the same as the probe-beam fre-

quency, i.e., ωp = ωs, the equations become

∂Ip

∂z
+

1

v

∂Ip

∂t
= −(α0 +

∞∑

m=1

α2mIm
p )Ip,

∂φp

∂z
+

1

v

∂φp

∂t
=

ω0

c

∞∑

m=1

n2mIm
p ,

∂Is

∂z
+

1

v

∂Is

∂t
= −(α0 +

∞∑

m=1

(m + 1)α2mIm
p )Is,

∂φs

∂z
+

1

v

∂φs

∂t
=

ω0

c

∞∑

m=1

(m + 1)n2mIm
p , (3.44)

where Ip(s) and φp(s) are the intensity and the phase of the temporal envelope of

the pump (probe) beam. We have adopted the notations v ≡ v(ωp) = v(ωs),

α2m ≡ α2m(ωp) = α2m(ωs) , n2m ≡ n2m(ωp) = n2m(ωs), and ω0 ≡ ωp = ωs
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Figure 3.2: Extension of SRTBC to higher-order nonlinearities: The model includ-

ing higher-order nonlinear effects is used to predict the SRTBC signal. Shown here

is the effect of a self-defocusing χ(5) on a self-focusing χ(3). The time delay is in

the units of the pulse duration.
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Figure 3.3: Intensity dependence of the SRTBC signal magnitude (peak-valley) for

various values of self-focusing χ(3) and for a self-focusing χ(3) with a self-defocusing

χ(5).
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In deriving Eqns. 3.44, we have made the slowly-varying envelope approxima-

tion and neglected group-velocity dispersion (GVD). It can also be verified that

these equations reduce to the more familiar conventional SRTBC governing equa-

tions when nonlinearities above third-order are neglected [11]. These equations are

used to calculate the signal traces produced by higher-order nonlinear processes

(as shown in Fig. 3.2). The intensity dependence of the signal magnitude (Fig. 3.3)

is then used to extract the values of n2m and α2m by fitting experimental data.

The SRTBC signal traces produced by higher-order processes in general do not

differ qualitatively from those produced solely by the third-order process (as is

evident in Fig. 3.2). It is thus difficult to identify the presence of higher-order

processes from a single signal trace. This difficulty is resolved by observing the in-

tensity dependence of the signal magnitude. In Fig. 3.3 we illustrate the theoretical

prediction of the signal magnitude intensity dependence produced by self-focusing

χ(3) processes with various values of χ(3) and by a χ(3) − χ(5) process with a self-

focusing χ(3) and a self-defocusing χ(5). It is clear that from the signal magnitude

intensity dependence the presence of higher-order processes can be identified un-

ambiguously.

Measurements are performed with a Ti:sapphire regenerative amplifier centered

at 790 nm with a repetition rate of 1 kHz. The pulse duration is 100 fs. The pump

and probe beams are non-collinear, and their polarizations are linear and parallel.

Their intensities are in the ratio Ip : Is = 15 : 1 and the typical interaction length of

two beams is < 1 mm, so GVD is indeed negligible. Several materials with various

linear absorption edges are measured: sapphire (∼ 200 nm), SF-59 (∼ 400 nm), La-

Ga-S glass (∼ 500 nm), and As2S3 glass (∼ 600 nm), with corresponding reduced-

photon energies of hν/Eg = 0.25, 0.51, 0.63, and 0.76 respectively. (The crystalline
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sapphire sample was measured with the electric field perpendicular to the c-axis

and the propagation vector parallel to the a-axis.)

As Ip increases, we expect the nonlinearity to saturate in a way qualitatively

similar to that of a simple two-level system:

∆n(I) =
n2I

(1 + I/Isat)
, (3.45)

where ∆n(I) is the nonlinear refractive index and Isat is the saturation intensity.

On the other hand, by expanding ∆n(I) in the perturbative form:

∆n(I) = n2I − n2

Isat

I2 +
n2

(Isat)2
I3 − ... (3.46)

≡ n2I + n4I
2 + n6I

3 + ...,

it can be seen that as the I approaches Isat, the higher-order processes become

important, and for materials with lower Isat (usually with larger hν/Eg), the higher-

order nonlinearities can be probed more easily.

Fifth-order nonlinearities are observed in all materials except sapphire, and

seventh-order nonlinearities are observed in As2S3. As an example, here we focus

on the results from As2S3. The measured SRTBC signal magnitude vs. Ip and

nonlinear absorption signal magnitude vs. Ip are shown in Fig. 3.4. The deviation

from the theoretical prediction based on χ(3) alone is evident at high intensities.

The inclusion of χ(5) alone cannot account for the data, while introduction of a χ(7)

terms produces good agreement. From the numerical fitting, higher-order nonlin-

earities are estimated: n2 = 2.7 × 10−13cm2/W, n4 = −7.8 × 10−23cm4/W2 and

n6 = 7.2 × 10−33cm6/W3; and α2 = 2.1 × 10−8cm/W, α4 = 4.9 × 10−18cm3/W2,

and α6 = 4.6 × 10−28cm5/W3. Here χ(3) and χ(7) are self-focusing, and χ(5) is

self-defocusing. The alternating signs of χ(2m+1) are consistent with Eqn. (3.46).

The saturation intensity for As2S3 is ∼ 3 GW/cm2, in reasonable agreement with
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Figure 3.4: Intensity dependence of the (a) SRTBC signal magnitude (normalized

peak-valley transmission difference) and (b) nonlinear absorption signal of As2S3.

Insets show examples of SRTBC and nonlinear absorption traces (symbols) along

with the best fit theoretical curves. The time delay is given in units of the pulse

duration.
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Table 3.1: Measured n2, |n4/n2|, and α2. For sapphire, both n4 and α2 are under

the detection limit and upper-limits are given. For all samples, a self-defocusing

n4(< 0) is observed.

n2 |n4/n2| α2

sample hν/Eg ( 10−15 ( 10−12 ( 10−10

cm2/W) cm2/W) cm/W)

sapphire 0.25 2 < 1 < 0.001

SF-59 0.51 26 48 0.2

La-Ga-S 0.63 36 67 3

As2S3 0.76 270 290 210

previously reported value [17].

Results similar to those shown in Fig. 3.4 are obtained for the other mate-

rials, with the difference in the strength of saturation of the cubic nonlinearity.

For sapphire (with smallest hν/Eg), no saturation of n2 is detectable, nor is any

nonlinear absorption. Saturation of the nonlinear index is observed in SF-59 and

La-Ga-S glass. A self-defocusing n4 < 0 is inferred for these two samples, while

n6 is observed in neither. Two-photon absorption is also observed for both SF-59

and La-Ga-S glass, however, no detectable α4 is observed.

The measurements are summarized in Table 3.1. The measured values of n2

are consistent with previously-reported values [15, 17, 18]. It is important to note

that the saturation strength |n4/n2| increases with reduced-photon energy. In

other words, the higher-order nonlinearities become more important as the laser

frequency gets closer to the linear absorption edge. Strong saturation of the in-

stantaneous Kerr nonlinearity then is possible when the light frequency is close
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to the resonance. However, this large saturation is accompanied by strong non-

linear absorption, which is problematic for applications. Nevertheless, for a given

application an optimal range of reduced-photon energy could exist, in which the

combination of nonlinearity saturation and nonlinear loss would be acceptable for

applications. Table 3.1 shows that, although both α2 and |n4/n2| decrease as hν/Eg

decreases, α2 decreases much faster than |n4/n2| does. As a result, when hν/Eg

decreases, the nonlinear absorption can be acceptably small while the saturation

is still significant. Both SF-59 and La-Ga-S glass exhibit reasonably low satura-

tion intensities (Isat ∼ 20 GW/cm2 for SF-59 and Isat ∼ 15 GW/cm2 for La-Ga-S

glass) with moderate nonlinear absorption. Chen et al. employed similar reasoning

[19] to assess nonlinear glasses as media that can support multidimensional optical

solitons [13, 14].

3.4 Conclusions

SRTBC is extended to include higher-order nonlinear effects. We have used this

technique to measure the higher-order nonlinearities of several glasses. Fifth-order

nonlinearities are observed, and seventh-order nonlinearities are also required to

account for the nonlinear response when the excitation is well above the two-photon

absorption edge. Near the two-photon edge, saturation of the cubic nonlinearity is

observed with moderate nonlinear absorption. We believe that these observations

will have important implications for the formation of multi-dimensional optical

soltions in instantaneous Kerr media [13, 14, 19].
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Chapter 4

Criteria for the experimental

observation of multi-dimensional optical

solitons in saturable media∗

Criteria for experimental observation of multi-dimensional optical solitons in media

with saturable refractive nonlinearities are developed. The criteria are applied

to actual material parameters (characterizing the cubic self-focusing and quintic

self-defocusing nonlinearities, two-photon loss, and optical-damage threshold) for

various glasses. This way, we identify operation windows for soliton formation in

these glasses. It is found that two-photon absorption sets stringent limits on the

windows. We conclude that, while a well-defined window of parameters exists for

two-dimensional solitons (spatial or spatiotemporal), for their three-dimensional

spatiotemporal counterparts such a window does not exist, due to the nonlinear

loss in glasses.

4.1 Introduction

Solitons are localized wave packets and/or beams that result from the balance

of the linear and nonlinear responses of a physical system. Depending on the

physical properties of the underlying system, solitons take different forms. They

can be hydrodynamic wave packets, such as solitary waves in the ocean [20] and

atmosphere [21]. They can also be spin-wave packets, such as magnetic solitons [22,

23]. Bose-Einstein condensates provide a medium to produce matter-wave solitons

∗Most of the results presented in this chapter have been published in [19].
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[24]. Other examples of soliton dynamics can be found in a wide variety of fields,

including astrophysics, plasma physics, nuclear physics, and even metabolic biology

[25, 26, 27, 28], among others. Very accurate experiments have been performed

with topological solitons (fluxons) in long Josephson junctions, including a recent

direct observation of their macroscopic quantum properties [29].

Solitons in optics, which are known in their temporal, spatial, and spatiotem-

poral varieties (the latter ones being frequently called “light bullets”), constitute,

perhaps, the most versatile and well-studied (both theoretically and experimen-

tally) class of solitons in physics. In particular, temporal solitons in optical fibers

[30] have recently made a commercial debut in high-speed telecommunications links

[30, 31]. It has been pointed out that multi-dimensional (multi-D) spatiotemporal

optical solitons can be used in the design of high-speed all-optical logic gates and,

eventually, in all-optical computation and communications systems [2].

The balance of linear and nonlinear dynamical features is only the first step in

the soliton formation. Securing the stability of this balance is the second, equally

important step. A well-known difficulty is that the most common optical nonlin-

earity – the instantaneous Kerr effect in dielectrics – gives rise to soliton solutions

which are unstable in more than one dimension against the wave collapse, as dis-

cussed (in particular) in original papers [32, 33, 34] and in the review [35]. Several

mechanisms that can suppress the collapse have been investigated. These include

saturation of the instantaneous Kerr nonlinearity [4], higher-order dispersion or

diffraction (also referred to as “non-paraxiality”) [36], multiphoton ionization [37],

and stimulated Raman scattering (SRS) [38, 39]. In particular, importance of the

multi-photon absorption and SRS for the spatiotemporal self-focusing of light in

the instantaneous Kerr medium was inferred from experimental data in Ref. [40].
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However, these mechanisms eventually reduce the intensity and cause the pulse

to expand in time and space, precluding the achievement of multi-dimensional

solitons [41].

Different versions of the saturable nonlinearity (which implies saturation of the

cubic nonlinear susceptibility, χ(3), with high-intensity fields) have been studied

theoretically in detail. It was shown that both rational [13, 42, 43, 44, 45] and

cubic-quintic (CQ) [14, 46, 47] variants of the saturation readily support stable two-

dimensional (2D) and three-dimensional (3D) solitons. A difference between them

is that the former cannot stabilize “spinning” solitons with an intrinsic vorticity,

but the CQ nonlinearity makes it possible, in the 2D [48, 49, 50] and even 3D [51]

cases.

The first observation of a self-trapped beam in a instantaneous Kerr medium

was reported by Bjorkholm and Ashkin in 1974 [52]. The experiment was done in

sodium vapor around the D2 transition line, and self-focusing arose from strong

saturation of the transition (i.e. saturation of the linear susceptibility, χ(1)). Stud-

ies of 2D solitons have made rapid progress since the mid-1990’s in the study of

two new nonlinearities featuring saturation. Segev et al. predicted that the pho-

torefractive (PR) effect in electro-optic materials could be exploited to create an

effective saturable nonlinear index of refraction that would support solitons [53].

PR solitons were observed experimentally soon afterward [54]. In parallel to this,

there was a resurgence of interest in the so-called cascading nonlinearity, which is

produced by the interaction of two or three waves in media with quadratic (χ(2))

nonlinear susceptibility. Both 1D and multi-D solitons in the quadratic media

had been studied theoretically in numerous works (see reviews [3] and [55]). Sta-

tionary 2D spatial solitons (in the form of self-supporting cylindrical beams) were
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first generated in quadratic media by Torruellas et al. [56]. Later, Di Trapani

et al. observed temporal χ(2) solitons [57], and, finally, spatiotemporal solitons

were produced by Liu et al. [10, 58]. Under appropriate conditions, both the PR

and cascading nonlinearities may be modeled as saturable generalizations of the

instantaneous Kerr nonlinearity (despite the fact that the PR media are, strictly

speaking, non-instantaneous, nonlocal, and anisotropic). However, to date, multi-

D solitons in true saturable instantaneous Kerr media have not been observed.

In this work, we examine the possibility of stabilizing solitons (arresting the

collapse) in saturable instantaneous Kerr media [4], from the perspective of ex-

perimental implementation. Existing theories provide for parameter regions where

formation of stable solitons is possible, but neglect linear and nonlinear losses, as

well as other limitations, such as optical damage in high-intensity fields. First,

we propose a criterion for acceptable losses, and determine the consequences of

the loss for the observation of soliton-like beams and/or pulses. Then, as bench-

mark saturable instantaneous Kerr media, we consider nonlinear glasses. Direct

experimental measurements of the higher-order nonlinearities and nonlinear (two-

photon) loss in a series of glasses allow us to link the theoretical predictions to

experimentally relevant values of the parameters. As a result, we produce “maps”

of the experimental-parameter space where 2D and 3D solitons can be produced.

To our knowledge, this is the first systematic analysis of the effects of nonlinear

absorption on soliton formation in saturable instantaneous Kerr media. We con-

clude that it should be possible, although challenging, to experimentally produce

2D spatial and 2D spatiotemporal solitons in homogeneous saturable media. Spa-

tiotemporal solitons require anomalous group-velocity dispersion (GVD). Under

conditions relevant to saturation of the instantaneous Kerr nonlinearity, material
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dispersion is likely to be normal. In that case, anomalous GVD might be obtained

by pulse-tilting, e.g. On the contrary, the prospects for stabilizing 3D solitons

seem poor, even ignoring the need for anomalous GVD. This conclusion suggests

that qualitatively different nonlinearities, such as χ(2), may be more relevant to

making light bullets.

We focus on Gaussian beam profiles, which are the prototypical localized so-

lutions. Very recent work has shown that nonlinear loss can induce a transition

from Gaussian to conical waves, which can be stationary and localized [59, 60].

The conical waves are very interesting, but represent a different regime of wave

propagation from that considered here. An interesting feature of such waves is

that their shape effectively induces anomalous dispersion, in a manner similar to

pulse-tilting [61].

The rest of the Chapter is organized as follows. The theoretical analysis of

the necessary conditions for the formation of the 2D and 3D solitons is presented

in Section 2. In Section 3, we revisit the experimental results of the nonlinear

parameters briefly. Final results, in the form of windows in the space of physical

parameters where the solitons may be experimentally generated, are displayed in

Section 4, and this Chapter is concluded in Section 5.

4.2 Theoretical analysis of the necessary conditions for the

existence of two- and three-dimensional solitons

Evolution of the amplitude E of the electromagnetic wave in a lossless instanta-

neous Kerr-like medium with anomalous GVD obeys the well-known scaled equa-
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tion [13, 43, 44, 45]

iEz +
1

2
(Exx + Eyy + Ett) + f(I)E = 0 , (4.1)

where z and (x, y) are the propagation and transverse coordinates respectively, and

t is the reduced temporal variable, and f(I) is proportional to the nonlinear cor-

rection to the refractive index ∆n(I). In the instantaneous Kerr medium proper,

the refractive index is n(I) ≡ n0 + ∆n(I) = n0 + n2I, which, as was mentioned

above, gives rise to unstable multi-dimensional solitons, including the weakly un-

stable Townes soliton in the 2D case [35]. Upon the propagation, the unstable

solitons will either spread out or collapse towards a singularity, depending on small

perturbations added to the exact soliton solution.

Conditions for the soliton formation are usually expressed in terms of the nor-

malized energy content, but from an experimental point of view it is more relevant

to express the conditions in terms of intensity and size (temporal duration and/or

transverse width) of the pulse/beam. They can also be converted into the disper-

sion and diffraction lengths, which are characteristics of the linear propagation.

We transform the results of Ref. [34] to estimate the parameters of the 2D and

3D solitons in physical units. The transformation is based on the fact that the

solutions are scalable with the beam size. Without losing generality, the estima-

tion also assumes a Gaussian profile for the solutions. The relations between the

critical peak intensity necessary for the formation of the soliton and diffraction

length, in SI units are:

Icritical ≈





0.52
(

n2

0

n2

) (
λ0

Ldiffr

)
for 2D,

0.79
(

n2

0

n2

) (
λ0

Ldiffr

)
for 3D,

(4.2)
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where Ldiffr = 2πn0w
2
0/λ0 is the diffraction length of the beam with the waist

width w0. Eqn.4.2 is easy to understand for the 2D spatial case. For the 2D

spatiotemporal and the 3D case, we have assumed that the light bullet experiences

anomalous GVD, and has a dispersion length equal to the diffraction length, i.e. we

have assumed spatiotemporal symmetry for the system, as is evident in Eqn. (4.1).

Further examination of Eqn. (4.2) shows that the beam’s power is independent of

its size for 2D solitons, which is a well-known property of the Townes solitons, and

the light-bullet’s energy decreases as its size decreases in the 3D case [34].

As said above, two different forms of the saturation of the instantaneous Kerr

nonlinearity were previously considered in detail theoretically, with ∆n(I) in ra-

tional form [13, 43, 44, 45],

∆n(I) =
n2I

(1 + I/Isat)
, (4.3)

and CQ (cubic-quintic) [14, 46, 47, 48, 49, 50],

∆n(I) = n2I − n4I
2 , (4.4)

with both n2 and n4 positive. Although these two models are usually treated

separately (and, as mentioned above, they produce qualitatively different results

for vortex solitons), they are two approximate forms of the nonlinear index for real

materials. When the light frequency is close to a resonance, Eqn. (4.3) describes

the system well; if the frequency is far away from resonance, Eqn. (4.4) is a better

approximation. When I ≪ Isat, Eqn. (4.3) can be expanded, becoming equivalent

to the CQ model,

∆n(I) ≈ n2I − (n2/Isat) I2 ≡ n2I − n4I
2 . (4.5)

with n4 ≡ n2/Isat. The two models produce essentially different results when the

expansion is not valid.
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Critical conditions for the formation of 2D solitons in these systems were found

numerically by Quiroga-Teixeiro et al. [14] (2D), and by Edmundson et al. [44]

and McLeod et al. [45] for the 3D solitons. From those results, we can estimate the

necessary experimental parameters for both the 2D and 3D case by the transfor-

mation to physical units. The transformation is based on scaling properties of the

governing equation (4.1). The estimate again assumes a Gaussian profile, which

yields

I ≥ Istable ≈





0.16 (n2/n4) for 2D,

1.25 (n2/n4) for 3D,

(4.6)

for the minimum peak intensity needed to launch a stable soliton, and

w0 ≥ wstable ≈





0.77λ0
√

n0n4/n2 for 2D,

0.3λ0
√

n0n4/n2 for 3D,

(4.7)

for the minimum size of the beam. The latter translates into the minimum diffrac-

tion length,

Ldiffr ≥





3.68λ0n4 (n0/n2)
2 for 2D,

0.56λ0n4 (n0/n2)
2 for 3D.

(4.8)

In general, these results show that the required intensity decreases with (n2/n4).

This means that a larger self-defocusing coefficient n4 makes it easier to arrest col-

lapse, as expected. On the other hand, a larger n4 also makes the beam size larger.

This is also understandable, since stronger self-defocusing reduces the overall fo-

cusing effect and makes the beam balanced at a larger size.

Up to this point, the medium was assumed lossless. In real materials, saturable

nonlinear refraction is accounted for by proximity to a certain resonance, which
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implies inevitable presence of considerable loss. Strictly speaking, solitons cannot

exist with the loss. Of course, dissipation is present in any experiment. The chal-

lenge is to build a real physical medium which is reasonably close to the theoretical

models predicting stable solitons. In particular, this implies, as a goal, the identi-

fication of materials that exhibit the required saturable nonlinear refraction, with

accompanying losses low enough to allow the observation of the essential features

of the solitons. Under these conditions, only soliton-like beams (“quasi-solitons”),

rather than true solitons, can be produced. Nevertheless, in cases where losses

are low enough for such quasi-solitons to exist (the conditions will be described

below), we refer to the objects as “solitons”.

As candidate optical materials for the soliton generation, we focus on glasses, as

they offer a number of attractive properties [15, 62, 63]. Their χ(3) susceptibility is

generally well-known, varying from the value of fused silica (n2 ∼ 3×10−16cm2/W)

up to 1000 times that value. The linear and nonlinear susceptibilities of glasses

exhibit an almost universal behavior that depends largely on the reduced photon

energy (h̄ω/Eg, where h̄ω is the photon energy, and Eg is the absorption edge,

as defined in Refs. [15, 62, 63]). This results in simple and clear trends that can

be easily understood. The wide variety of available glasses offers flexibility in the

design of experiments. Glasses are solid, with uniform isotropic properties that

make them easy to handle and use. There are recent experimental reports of sat-

urable nonlinearities in some chalcogenide glasses [17]. The saturable nonlinearity

was actually measured with the photon energy above the two-photon absorption

edge, hence this case is not relevant to the pulse propagation, as the loss would be

unacceptably high. However, these measurements encourage the search for the sit-

uation where the nonlinearity saturation is appreciable while the loss is reasonably
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low.

It is possible to crudely estimate the conditions that will be relevant to soli-

ton formation based on the general features of the nonlinearities of glasses. The

nonlinearity of the (2n − 1)th order will become significant and increase rapidly

when the photon energy crosses the n-photon resonance. Just as the nonlin-

ear index increases rapidly (and is accompanied by two-photon absorption, 2PA)

when h̄ω/Eg ∼ 0.5, we expect n4 to become significant (and be accompanied by

three-photon absorption, 3PA) when h̄ω/Eg ∼ 0.33. The requirement that n4

be appreciable without excessive 2PA or 3PA implies that, within the window

0.33 < h̄ω/Eg < 0.5, the solitons may be possible.

To formulate these conditions in a more accurate form, it is necessary to identify

a maximum loss level beyond which the dynamics deviate significantly from that

of a lossless system. This issue can be addressed by theoretical consideration of

quasi-solitons in (weakly) dissipative systems. First of all, we fix, as a tolerance

limit, an apparently reasonable value of ℓtolerance ≡ 10% peak-intensity loss per

characteristic (diffraction) length, Ldiffr. From what follows below, it will be clear

how altering this definition may impact the predicted parameter window for soliton

formation.

If the loss is produced by 2PA, the corresponding evolution equation for the

peak intensity I(z) is

dI

dz
= −β2PAI2, (4.9)

where β2PA is the 2PA coefficient. It follows that the loss per Ldiffr (provided

that the it is small enough) is ∆I ≈ −β2PAI2Ldiffr. The substitution of the above

definition of the tolerance threshold, |∆I|/I < ℓtolerance, into the latter result leads
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to an upper bound on the intensity:

I < I2PA tolerance ≡
ℓtolerance

β2PALdiffr

. (4.10)

Notice that the condition (4.7) implies that the diffraction length cannot be too

short, hence the upper limit in Eqn. (4.10) cannot be extremely high.

An analogous result for 3PA is

I2 < I2
3PA tolerance ≡

ℓtolerance

β3PALdiffr

,

which follows from the evolution equation [cf. Eqn. (4.9)]dI/dz = −β3PAI3. How-

ever, as will be discussed later, in the case relevant to the soliton formation, 2PA

dominates over 3PA.

However, within the distance necessary for the observation of the soliton, its

peak intensity must remain above the threshold value (4.6), to prevent disinte-

gration of the soliton. Solving Eqn. (4.9), this sets another constraint on the

intensity:

I0

1 + Nβ2PAI0Ldiffr

> Istable , (4.11)

where I0 is the initial peak intensity, and N is the number of diffraction lengths

required for the experiment. In this work, we assume N = 5, which is sufficient

for the reliable identification of the soliton [10, 58]. Note that the condition (4.11)

can never be met if the necessary value Istable is too high,

Istable > Imax ≡ (Nβ2PALdiffr)
−1 . (4.12)

In the case of I0 ≥ Imax, the overall peak-intensity loss with the propagation

will be ≥ 50%. We will refer to the situation in which Istable > Imax as a “loss

dominating” one, and the opposite as “saturation dominating”, since 1/Istable and

1/Imax can be viewed, respectively, as measures of saturation and loss in the system.
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When saturation dominates over the 2PA loss, and hence creation of the soliton is

possible, Eqn. (4.11) can cast into the form of a necessary condition for the initial

peak power,

I0 > Imin ≡ Istable

1 − Istable/Imax

. (4.13)

The material-damage threshold, Idamage, also limits the highest possible peak

intensity that can be used experimentally. Although this threshold depends on

both the material and pulse duration, we will assume Idamage ≃ 100 GW/cm2,

which is typical for nonlinear glasses and pulses with the duration ∼ 100 fs. Thus,

all the above results can be summarized in the form

Imin < I0 < min {I2PA tolerance, Idamage} . (4.14)

In a material with known nonlinearity and loss, experimental observation of the

solitons is feasible if the corresponding window (4.14) exists.

A somewhat simplified but convenient way to assess this is to define a figure of

merit (FOM). In the case when Idamage > I2PA tolerance,

FOM ≡ log
(

I2PA tolerance

Imin

)

=





log

[
ℓtolerance

(
1.74 n2

n2
0λ0β2PA

− N

)]
,

for 2D,

log

[
ℓtolerance

(
1.42 n2

n2
0λ0β2PA

− N

)]
,

for 3D.

(4.15)
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If Idamage is smaller than I2PA tolerance, the definition becomes

FOM ≡ log
(

Idamage

Imin

)

=





log

[
Idamage

n4
n2

(
6.4 − 3.68Nβ2PA

λ0n
2
0

n2

)]
,

for 2D,

log

[
Idamage

n4
n2

(
0.8 − 0.56Nβ2PA

λ0n
2
0

n2

)]
,

for 3D.

(4.16)

The FOM is a measure of the range between the minimum required and maximum

allowed values of the peak intensity. Of course, it must be positive, and the larger

the FOM, the better the chance to observe solitons.

It seems to be commonly accepted that a larger quintic self-defocusing coeffi-

cient n4 is always desirable, but the above results show that this is not always true.

From the FOM we can see that a larger n4 is better in the sense that it reduces

the lower threshold Imin, helping to secure the positiveness of the FOM (4.16).

However, as soon as Imin is low enough that the damage threshold no longer poses

a problem, Eqn. (4.15) shows that larger n4 does not help, and the loss factor β2PA

dominates. One can understand this, noticing that, although larger n4 reduces

Imin, at the same time it increases the beam’s width and makes the needed experi-

mental propagation length longer, as is clearly shown by Eqn. (4.8). In turn, more

loss accumulates due to a longer propagation length, which offsets the benefit of a
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lower Imin.

4.3 Measurements of nonlinear parameters of glasses

The eventual objective is to answer the following question: for a given category of

materials (such as glasses), with known nonlinear, loss, and damage characteristics,

does there exist a combination of material and wavelength such that solitons can be

observed? To this end, we have measured the nonlinearity in a series of glasses with

100-fs pulses from a Ti:sapphire regenerative amplifier with center wavelength at

790 nm. Sapphire is used (it has h̄ω/Eg
∼= 0.25 in this case) as a reference material

with minimum nonlinearity. Although fused silica can also be used for this purpose,

sapphire’s higher damage threshold allows us to measure at higher intensities.

We measured several glasses, including: SF59 (with h̄ω/Eg ≃ 0.5), La-Ga-

S(with h̄ω/Eg ≃ 0.56), and As2S3 (with h̄ω/Eg ≃ 0.75). To determine the effective

χ(3) and χ(5) susceptibilities, spectrally resolved two-beam coupling (SRTBC) was

used [11]. The extended application of this method taking into account both

higher-order nonlinearities and strong signals is used. In general, 2PA is observable

even for h̄ω/Eg < 0.5 owing to the absorption-edge broadening present in all

glasses.

As has been discussed in the previous chapter, typical experimental traces ob-

tained from As2S3 are shown in the insets of Fig. 3.4, along with the theoretical

fits. The intensity dependence of the SRTBC signal magnitude and normalized

nonlinear absorption signal magnitude are shown in Fig. 3.4. The dotted curves

in both panels are predictions for the pure χ(3) nonlinearity. The deviation of the

experimental points from these curves is evidence of the saturation of the nonlin-

earity. Postulating the presence of the χ(5) self-defocusing nonlinearity provides
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for good agreement with the experiments. Similar results were produced by all

four samples used in the measurements; in particular, in all the cases the sign of

the real part of χ(5) turns out to be opposite to that of χ(3), i.e., the quintic nonlin-

earity is self-defocusing indeed. The measured χ(3) coefficients are consistent with

previously reported values [15, 17, 18].

From these results, we also observe that higher-order nonlinearities become

more important as the optical frequency approaches a resonance, as expected on

physical grounds. The χ(5) part of the nonlinearity is most significant for As2S3,

while for sapphire it is below the detection threshold.

4.4 Stability windows for the two- and three-dimensional

solitons

The measurements provide the information needed to construct the window for

the soliton formation. The results for 2D case are shown graphically in Fig. 4.1.

The intensity limitations are plotted on the diagram against the reduced photon

energy. The parameter space can be divided into two regions which were defined

above, viz., the saturation-dominating and absorption-dominating ones, with the

boundary between then determined by Eqn. (4.12). To demonstrate the dramatic

effect of the loss, we also plot the window for the (unrealistic) case when loss is

completely neglected (the hatched area). In the absence of loss, the window is very

large and the FOM increases monotonically with the reduced photon energy. The

shaded area is the window remaining after inclusion of the loss. It is greatly reduced

compared to the lossless case, and the best FOM is obtained near h̄ω/Eg ≃ 0.35.

From this diagram, we conclude that, while the saturation of the nonlinearity is
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Figure 4.1: The operation window for the 2D solitons, as predicted on the basis

of the experimentally-measured characteristics of the glass. The hatched area is

the window neglecting loss. The shaded area is the dramatically reduced (but

definitely existing) window found with loss taken into account.
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definitely necessary to stabilize the soliton, major restrictions on the window are

imposed by the loss.

From the above rough estimation that were based on the band-edge arguments,

one might expect that 3PA would further curtail the window, when the 2PA effects

are weak (which is the case exactly inside the predicted window). However, n2 and

2PA have been observed in glasses for the reduced photon energy as low as ∼ 0.35

[62], due to the fact that the band edge in glasses extends well below the nominal

value. Since significant 2PA remains in this region, 3PA may be neglected indeed.

Hence, 2PA presents the fundamental limitation to observing solitons in these

media [as quantified by the FOM in Eqns. (4.15) and (4.16)].

The results of the analysis for the 3D solitons are summarized in Fig. 4.2. Note

that another major issue in this case is the requirement of anomalous GVD. This

requirement is neglected here (addition of it will only further constrain the win-

dow, which does not really exist even without that, see below). From Fig. 4.2, we

observe that, even in the lossless case, the window (hatched area) is significantly

smaller than in the 2D case. This is expected, because collapse is stronger in 3D

than 2D [35]. As in the 2D case, the loss again is a major concern for performing

experiments. The most important inference is that the window closes up com-

pletely when loss is taken into account. Thus, it appears that loss will preclude

the creation of 3D solitons in glasses, while leaving room for the 2D solitons.

Our overall conclusion is that it is a challenge to perform experimental studies

of 2D solitons in saturable instantaneous Kerr media. Both spatial and spatiotem-

poral solitons are possible to be produced experimentally. Among these two, the

2D spatiotemporal case is more complicated since it requires anomalous GVD. In

general, this will naturally constrain the window further. In this case tilted-pulse
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Figure 4.2: The operation window for 3D solitons. The meaning of the hatched

area is the same as in the 2D case, i.e., it shows the window obtained neglecting

loss. When loss is taken into account, the window vanishes completely.
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techniques could be used to obtain anomalous GVD. It is also possible to use a

planar waveguide to perform 2D spatiotemporal soliton experiments.

Of course, the predicted window depends on the assumed parameters (such as

the damage threshold) and criteria (such as the 10% loss per diffraction length).

Variations in these parameters will naturally impact the window, and our anal-

ysis provides the guidelines for searching for the most favorable materials and

wavelength. A next natural step is to perform numerical simulations of the pulse

propagation with the parameters selected in the present work. It is conceivable

that the window for 3D solitons would finally open through variations of material

parameters. In that case, one would still have to find an overlap of the resulting

window with the condition that the GVD must be anomalous. More generally,

non-glass materials may be tried to improve the possibilities for the experiment.

4.5 Conclusions

We have developed criteria for experimental observation of multi-dimensional soli-

tons – spatial and spatiotemporal 2D solitons and spatiotemporal 3D ones. Using

these criteria and measured properties of nonlinear glasses within a range of re-

duced photon energies, we have shown that the loss that accompanies higher-order

nonlinearities (which are tantamount to saturation of the cubic nonlinearity) will

set very stringent limits on the material parameters appropriate for the experiment.

While loss was thus far neglected in theoretical treatments of multi-dimensional

solitons, this work motivates more systematic studies of the soliton-like propaga-

tion in lossy media.

The criteria developed in this paper can also be applied, as an assessment tool,

to materials other than glasses. More generally, the same rationale used for ob-
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taining the relevant boundaries in this paper can also be used in systems other

than optical ones. In these cases the specific mathematical forms of the bound-

aries will be different. In any case, the analysis presented here suggests that there

is a small but apparently usable window of parameters in which 2D solitons can

be generated. On the contrary, the prospects for generating 3D solitons in glasses

are quite poor.
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Chapter 5

Future directions
The usable window of parameters for producing 2D solitons is small but nonzero.

The candidate materials should have the reduced-photon energy in the range of

0.3 ∼ 0.4. For pulse center wavelength at 790 nm there are many commercially

available glasses in this reduced-photon energy range. Some examples are Schott

glass PK1 (reduced-photon energy hν/Eg ∼ 0.36), PK2 (hν/Eg ∼ 0.38), PK3

(hν/Eg ∼ 0.38), PSK2 (hν/Eg ∼ 0.38), PSK3 (hν/Eg ∼ 0.38), BK1 (hν/Eg ∼

0.38), BK3 (hν/Eg ∼ 0.38), BK7 (hν/Eg ∼ 0.38), UBK7 (hν/Eg ∼ 0.37), BK8

(hν/Eg ∼ 0.38), and BK10 (hν/Eg ∼ 0.37). In fact, attempts have been made very

recently to produce stable propagation of a 2D beam in BK7. Some encouraging

initial results which could eventually lead to the production of stable 2D solitons

were obtained [64].

However, it seems difficult to achieve the ultimate goal of observation of 3D

solitons in a saturable instantaneous Kerr-type nonlinear media. Since the pre-

dicted window of parameters for 3D solitons is essentially zero, it is expected to be

a major challenge to find materials which have strong enough higher-order nonlin-

earities without too much absorption, if they exist. Even if such a material does

exist, another challenge is the requirement of anomalous group velocity dispersion

(GVD). Generally, in passive materials, anomalous GVD occurs at longer wave-

lengths (e.g. for BBO, anomalous GVD occurs at wavelengths larger than 1.4µm).

To reach this wavelength region, significant investment in the development of a

suitable light source has to be made and it remans a question that if the higher-

order nonlinear properties are “appropriate” for stabilizing the 3D soliotns at these

85
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frequency ranges.

There is a potential alternative, however. Assuming that the efforts to produce

stable 2D optical solitons in saturable instantaneous Kerr-like media turn out to be

successful and materials supporting stable 2D optical solitons are identified, for the

same materials to be able to support stable 3D sloitons, two obstacles have to be

overcome. The problem with these materials is that they do not have the correct

sign of GVD in the frequency range where the higher-order nonlinear properties

are large enough. They would also be too lossy for producing 3D solitons since in

general the loss tolerance for 3D solitons is smaller.

An interesting idea is to “borrow” the properties of an inverted Lorentz os-

cillator. The dispersion properties (for both phase velocity dispersion and GVD)

for an inverted Lorentz oscillator exhibits opposite sign to that of the noninverted

oscillator. More specifically, since GVD is

d2k

dω2
=

2

c

dn

dω
+

ω

c

d2n

dω2
, (5.1)

, when an Lorentz oscillator is inverted, all the derivatives of the refractive index

will change sign. This is illustrated in Fig. 5.1, both the slope of the curve (corre-

sponding to the phase velocity dispersion) and the concavity of the curve (which

usually dominatingly determines GVD) is inverted. It is then possible to combine

this anomalous GVD from the inverted oscillator (presumable a gain medium)

with the nonlinear properties from the materials supporting 2D solitons. Both

the loss and normal dispersion from the 2D-soliton-supporting material can then

be compensated by the inverted Lorentz oscillator and this changes the prospects

of producing 3D optical solitons in a instantaneous Kerr-type saturable nonlinear

medium.

One possible way to achieve this is immersing a porous substrate made from
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Figure 5.1: The refractive index and absorption/gain for a noninverted Lorentz

oscillator (solid line) and an inverted Lorentz oscillator (dashed line). For a give

frequency, the sign of the dispersion properties for an inverted Lorentz oscillator

will be opposite to that of an noninverted oscillator.
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2D soliton supporting glasses in a gaseous or liquid gain medium which provides

the desirable dispersion properties. The pore size should be small enough (smaller

than tenth of wavelength) that the substrate can still be viewed as homogeneous,

but also large enough that the mixing with the external gain medium can occur.

We can even extend the same concept to quadratic nonlinear systems. In fact,

as mentioned before, cascading quadratic process generates large and saturable

nonlinearity and 2D stable spatial optical solitons have been demonstrated in these

systems (KTP crystal, for example) [3]. It is then intriguing to think about the

possibility of combining the dispersion property of an inverted Lorentz oscillator

and the nonlinear property of a quadratic crystal. One can imagine a piece of

porous KTP or BBO crystal immersed in a gain medium.

Of course it remains an open question if such an approach can be realized.

There are many questions that have to be answered. Some of them are: Where can

we find or how can we produce such a system with the desired frequency response

and dispersion properties? How do the nonlinear and linear properties change

when a bulk nonlinear material is made porous? What is the role of quantum

effects? How small is the pore size when simple scaling can no longer be used to

estimate these properties? Will the mixture of the gain medium and the porous

substrate give rise to new effects? How does one produce such a porous substrate?

It is not a trivial task to resolve these questions.

On the contrary, a more promising possible route of achieving stable 3D optical

solitons is through the cascading quadratic nonlinearities. As mentioned before,

the cascading process produces large and saturable nonlinearities. It has been

used in demonstrating many types of solitons, including 2D spatial and 2D spa-

tiotemporal solitons (see, for example, the review article [3]). Initial theoretical
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investigations and the search of available materials for experimentally demonstrat-

ing 3D stable optical solitons in a quadratic system have shown promising signs

[65]. Although one still faces the same dispersion problem and would need to work

at a different wavelength regime such as 3−4 µm, to obtain the needed anomalous

dispersion, using quadratic nonlinearity has a major advantage: the χ(2) nonlin-

earities are much better documented and can be measured more easily in a wider

range of wavelengths (compared with higher-order nonlinearities such as χ(5)) and

its magnitude is in general much larger than χ(3). In addition, there is also a

wide variety of commercial available χ(2) crystals on the market. All these help

reduce the search of 3D stable optical soliton to a single engineering problem: How

does one build a high-quality light-source which produce stable, transform-limited

pulses with good beam profile and enough intensity? In fact, recent developments

in this direction shows some encouraging signs [66] and it might not be too difficult

to develop the required source in the very near future. We believe this direction

is currently the most promising option and deserves more research investment and

attention.



Appendix A

Simulation code
In the following pages we include the simulation code used in this work. The simu-

lation basically calculates the evolution of Eqn. 3.42 using Runge-Kutta algorithm.

The code is in C and includes the following files: “runsrtbc. c”, “srtbc. c”, “propa-

gate. c”, “initpulse. c”, “rk. c”, “F1. c”, “F2. c”, “F3. c”, “F4. c”, “srtbc. h”, and

“srtbcset. h”. The display and visualization of the simulation result is handled us-

ing MATLAB and two visualization application files “cut. m” and “fulldisplayc. m”

are also included.

“main()” function is defined in file “runsrtbc. c”, this is also where the output

file name and path are defined. When executed, “main()” calls function “srtbc()”,

which is defined in file “srtbc. c”, and starts a loop handling the time-delay. In this

loop, “srtbc()” calls function “propagate()” defined in file “propagate. c”. This

function will then initiate a loop handling the spatial propagation of the pulses.

To do this, “propagate()” calls “initpulse()” (defined in “initpulse. c” for the first

propagation step and then calls “rungekutta()” (defined in “rk. c”) to calculate the

pulse evolution along the propagation. The main components of “rungekutta()”

are four functions “function1()”,“function2()”,“function3()”, and “function4()”,

which represent the four governing equations respectively. They are defined in

files “F1. c”, “F2. c”, “F3. c”, and “F4.c” and the highest order nonlinearity

included is χ(7). The extension to including even higher order terms can be done

straight-forwardly by changing these four files and other parameters accordingly.
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file name: runsrtbc.c 

 
 
#include "srtbc.h" 
#include "srtbcset.h" 
#include "mat.h" 
 
int main(void) 
{ 
 
  double inpowd[TRES]; 
 
  double refpowd[TRES]; 
 
  double signal[DELAYRES][TRES]; 
 
  double pumppowd[DELAYRES][TRES]; 
 
  double probpowd[DELAYRES][TRES]; 
 
  int res[2]={TRES,ZRES}; 
 
  double 
pulse_param[6]={PUMPR,PROBR,PUMPDELAY,PROBDELAY,PUMPWID,P
ROBWID}; 
 
  double parameter[3]={ALPHA,BETA,GAMMA}; 
        
 
  double delayparam[2]={MAXDELAY,DELAYRES}; 
        
  double FWHM=(double)(0.265010363*TRES/PROBWID);   
   
  double pulsep[4]={PUMPR,PROBR,PUMPWID,PROBWID}; 
 
  MATFile *mfout; 
  mxArray *inp,*ref,*sig,*prb; 
  mxArray *dims,*norm,*para,*psp; 
  int numelem = DELAYRES*TRES; 
  int dd[1]={2}; 
  int dp[1]={3}; 
  int dpsp[1]={4}; 
  int dt[1]={TRES}; 
  double dimen[2]={TRES,DELAYRES}; 
  int dimenf[2]={TRES,DELAYRES}; 
  double normal[2]={FWHM,MAXDELAY}; 
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  int t;   
 
 
  
srtbc(inpowd,refpowd,signal,pumppowd,probpowd,res,pulse_param,parameter
,delayparam); 
   
  //for (t=0;t<=TRES-1;t++) 
  //    printf("\nref2 %f t= %d",refpowd[t],t); 
   
 
  if((mfout = matOpen("test.mat","w"))== NULL) 
{ 
    fprintf(stderr,"\nERROR:cannot creat matlab output file"); 
    return 0;   
} 
 
  //  for (t=0;t<=TRES-1;t++) 
  //  printf("\nref2 %f t= %d",refpowd[t],t); 
   
  dims = mxCreateNumericArray(1,dd,mxDOUBLE_CLASS,mxREAL); 
  mxSetName(dims,"dimensions"); 
  memcpy((void *)(mxGetPr(dims)),(void *)dimen,sizeof(dimen)); 
  matPutArray(mfout,dims); 
  mxDestroyArray(dims); 
 
  norm = mxCreateNumericArray(1,dd,mxDOUBLE_CLASS,mxREAL); 
  mxSetName(norm,"normalization"); 
  memcpy((void *)(mxGetPr(norm)),(void *)normal,sizeof(normal)); 
  matPutArray(mfout,norm); 
  mxDestroyArray(norm); 
 
  para = mxCreateNumericArray(1,dp,mxDOUBLE_CLASS,mxREAL); 
  mxSetName(para,"parameters"); 
  memcpy((void *)(mxGetPr(para)),(void *)parameter,sizeof(parameter)); 
  matPutArray(mfout,para); 
  mxDestroyArray(para); 
 
  psp = mxCreateNumericArray(1,dpsp,mxDOUBLE_CLASS,mxREAL); 
  mxSetName(psp,"pulseparameters"); 
  memcpy((void *)(mxGetPr(psp)),(void *)pulsep,sizeof(pulsep)); 
  matPutArray(mfout,psp); 
  mxDestroyArray(psp); 
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  inp = mxCreateNumericArray(1,dt,mxDOUBLE_CLASS,mxREAL); 
  mxSetName(inp,"inputprobpsd"); 
  memcpy((void *)(mxGetPr(inp)),(void *)inpowd,sizeof(inpowd)); 
  matPutArray(mfout,inp); 
  mxDestroyArray(inp); 
 
 
  ref = mxCreateNumericArray(1,dt,mxDOUBLE_CLASS,mxREAL); 
  mxSetName(ref,"referencepsd"); 
  memcpy((void *)(mxGetPr(ref)),(void *)refpowd,sizeof(refpowd)); 
  matPutArray(mfout,ref); 
  mxDestroyArray(ref); 
 
 
  sig = mxCreateNumericArray(2,dimenf,mxDOUBLE_CLASS,mxREAL); 
  mxSetName(sig,"signal"); 
  memcpy((void *)(mxGetPr(sig)),(void *)signal ,numelem*sizeof(double)); 
  matPutArray(mfout,sig); 
  mxDestroyArray(sig); 
 
 
  prb = mxCreateNumericArray(2,dimenf,mxDOUBLE_CLASS,mxREAL); 
  mxSetName(prb,"probpsd"); 
  memcpy((void *)(mxGetPr(prb)),(void *)probpowd ,numelem*sizeof(double)); 
  matPutArray(mfout,prb); 
  mxDestroyArray(prb); 
 
 
  matClose(mfout);   
   
} 
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file name: srtbc.c 

 
 
#include "srtbc.h" 
 
void srtbc(double *inpowd, double *refpowd, double signal[][TRES], double 
pumppowd[][TRES], double probpowd[][TRES],  int *res, double *pulse_param, 
double *parameter, double *delayparam) 
{ 
    double delay_inc,delay_center; 
    double *Ipu,*Phipu,*Ipr,*Phipr; 
    double pulse_param0[6]; 
    fftw_complex *temp,*pusp0,*prsp0,*pump_spect,*prob_spect; 
    fftw_plan fplan; 
    int fcenter,delay,init,t,dt; 
        
     
    fplan = 
fftw_create_plan(res[0],FFTW_BACKWARD,FFTW_MEASURE|FFTW_USE_
WISDOM);  
    printf("\n pass1"); 
     
    Ipu=(double *)malloc(res[0]*sizeof(double)); 
     
    if(!(Ipu == NULL)) printf("\n pass2"); 
    
    Phipu=(double *)malloc(res[0]*sizeof(double)); 
  
    if(!(Phipu == NULL)) printf("\n pass3"); 
      
    Ipr=(double *)malloc(res[0]*sizeof(double)); 
  
    if(!(Ipr == NULL)) printf("\n pass4"); 
    
    Phipr=(double *)malloc(res[0]*sizeof(double));  
  
    if(!(Phipr == NULL)) printf("\n pass5"); 
  
       
    temp=(fftw_complex *)malloc(res[0]*sizeof(fftw_complex)); 
  
    if (!(temp== NULL)) printf("\n pass6"); 
  
    pusp0=(fftw_complex *)malloc(res[0]*sizeof(fftw_complex)); 
  
    if (!(pusp0== NULL)) printf("\n pass7"); 
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    prsp0=(fftw_complex *)malloc(res[0]*sizeof(fftw_complex)); 
  
    if (!(prsp0==NULL)) printf("\n pass8"); 
  
    pump_spect=(fftw_complex *)malloc(res[0]*sizeof(fftw_complex)); 
  
     if (!(pump_spect==NULL)) printf("\n pass9"); 
  
      prob_spect=(fftw_complex *)malloc(res[0]*sizeof(fftw_complex)); 
  
    if (!(prob_spect== NULL)) printf("\n pass10"); 
     
      printf("\n"); 
   
    fcenter=(int)ceil(((double)res[0]-1.)/2.); 
    delay_inc = (double)(2.*delayparam[0]/delayparam[1]); 
    delay_center=(double)((delayparam[1]-1.)/2.); 
    dt=(int)ceil(fcenter-(((double)res[0]-1.)/2.)); 
 
    printf("\n test   dt = %e, halfc=  %e,  fcenter =  %e, 
delaycenter= %e",(double)dt,(double)(res[0]-1)/2,(double)fcenter, 
delay_center); 
    pulse_param0[0]=0;     
    pulse_param0[1]=pulse_param[1];    
    pulse_param0[2]=pulse_param[2];    
    pulse_param0[3]=pulse_param[3];    
    pulse_param0[4]=pulse_param[4];    
    pulse_param0[5]=pulse_param[5];    
     
    
propogate(fplan,temp,pusp0,prsp0,pump_spect,prob_spect,Ipu,Phipu,Ipr,Phipr
,res,pulse_param0,parameter,0); 
    
     for (t=0;t<=(fcenter-1); t++) 
   {    
         
              refpowd[t]=pow((double)(pow((double)(prob_spect[t+fcenter-
dt+1].re),2)+pow((double)(prob_spect[t+fcenter-dt+1].im),2)),1);   
                            
       //    printf("\nref= %f, t= %d",refpowd[t],t); 
          } 
 for (t=fcenter;t<=(res[0]-1); t++) 
   {    
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              refpowd[t]=pow((double)(pow((double)(prob_spect[t-
fcenter].re),2)+pow((double)(prob_spect[t-fcenter].im),2)),1);   
                      
       //  printf("\nref= %f, t= %d",refpowd[t],t); 
                      
          } 
 
 
    for(delay=0; delay<=((int)delayparam[1]-1); delay++) 
      {  
 
   pulse_param[2]=(double)delay_inc*(double)(delay-delay_center); 
 
        if(delay==0) 
   init=1; 
        else 
          init=0; 
 
       
 propogate(fplan,temp,pusp0,prsp0,pump_spect,prob_spect,Ipu,Phipu,I
pr,Phipr,res,pulse_param,parameter,init);      
 
        
 for (t=0;t<=(fcenter-1); t++) 
   {    
            if(init==1) 
       { 
   inpowd[t]=pow((double)(pow((double)(prsp0[t+fcenter-
dt+1].re),2)+pow((double)(prsp0[t+fcenter-dt+1].im),2)),1); 
   //     printf("\ninp= %f, t= %d",inpowd[t],t);       
   //          printf("\nref3= %f, t= %d",refpowd[t],t);         
       } 
 
          
probpowd[delay][t]=pow((double)(pow((double)(prob_spect[t+fcenter-
dt+1].re),2)+pow((double)(prob_spect[t+fcenter-dt+1].im),2)),1);   
             signal[delay][t]=((double)probpowd[delay][t]-
(double)refpowd[t])/(double)refpowd[t];  
      //  printf("\nsignal= %e, ref %e  
prob  %e",signal[delay][t],refpowd[t],probpowd[t]); 
          } 
 for (t=fcenter;t<=(res[0]-1); t++) 
   {    
            if(init==1) 
       { 
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       inpowd[t]=pow((double)(pow((double)(prsp0[t-
fcenter].re),2)+pow((double)(prsp0[t-fcenter].im),2)),1); 
       //  printf("\ninp= %f, t= %d",inpowd[t],t);        
       //  printf("\nref3= %f, t= %d",refpowd[t],t);     
 
} 
 
        probpowd[delay][t]=pow((double)(pow((double)(prob_spect[t-
fcenter].re),2)+pow((double)(prob_spect[t-fcenter].im),2)),1);   
       signal[delay][t]=((double)probpowd[delay][t]-
(double)refpowd[t])/(double)refpowd[t];  
 
 
          } 
  
  printf("\nDelay Step %d / %d complete !!", 
delay+1,(int)delayparam[1]);  
 
      } 
 
    printf("\n"); 
         
        fftw_destroy_plan(fplan);       
 
     free((void *)Ipu); 
        free((void *)Phipu); 
        free((void *)Ipr); 
        free((void *)Phipr); 
        free((void *)temp); 
        free((void *)pusp0);      
        free((void *)prsp0); 
 free((void *)pump_spect); 
        free((void *)prob_spect); 
     
 
     
      } 
     //     
spect=propogate(t_res,z_res,pu_ratio,pr_ratio,pu_delay,pr_delay,pu_wid,pr_w
id,alpha,beta,gamma); 
 
     //     
spect_0=propogate(t_res,z_res,0,pr_ratio,pu_delay,pr_delay,pu_wid,pr_wid,al
pha,beta,gamma); 
 
     //     fcenter=ceil((t_res+1)/2); 
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     //     PumpS=spect(:,1)'; 
     //     ProbS=spect(:,2)'; 
 
     //    ProbS_0=spect_0(:,2)'; 
 
     //     trans =(abs(ProbS(floor(fcenter+detune))+ 
(ProbS(ceil(fcenter+detune))-ProbS(floor(fcenter+detune)))*(detune-
floor(detune))))^2; 
     
     //     trans_0 =(abs( ProbS_0(floor(fcenter+detune))+ 
(ProbS_0(ceil(fcenter+detune))-ProbS_0(floor(fcenter+detune)))*(detune-
floor(detune))))^2; 
 
 
 
     //%tt=1:t_res; 
 
     //%subplot(2,1,1) 
 
     //%plot(tt,abs(PumpS(tt)),'--b') 
     //%hold on 
     //%plot(tt,angle(PumpS(tt)),'--g') 
     //%hold off 
 
     //%subplot(2,1,2) 
 
  //%plot(tt,abs(ProbS(tt)),'--b') 
  //%hold on 
  //%plot(tt,angle(ProbS(tt)),'--g') 
  //%hold off 
 
   //signal=[trans,trans_0,(trans/trans_0-1)]; 
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file name: propagate.c 
 
 
#include "srtbc.h" 
 
void propogate(fftw_plan fplan,fftw_complex *temp,fftw_complex *pusp0, 
fftw_complex *prsp0, fftw_complex *pump_spect, fftw_complex 
*prob_spect,double *Ipu,double *Phipu, double *Ipr, double *Phipr, int *res, 
double *pulse_param, double *parameter,int init) 
 
{ 
  
  double IandPhi[4]; 
  double inc_z;  
  int z,t; 
 
 
  inc_z=(1./(double)res[1]); 
   
   
  initpulse(Ipu,Phipu,Ipr,Phipr,pulse_param,res); 
  
if(init == 1) 
    { 
  for (t=0; t<= (res[0]-1); t++) 
{ 
  temp[t].re=pow(Ipu[t],0.5)*cos(Phipu[t]); 
  temp[t].im=pow(Ipu[t],0.5)*sin(Phipu[t]); 
} 
  fftw_one(fplan,temp,pusp0); 
 
 for (t=0; t<= (res[0]-1); t++) 
{ 
  temp[t].re=pow(Ipr[t],0.5)*cos(Phipr[t]); 
  temp[t].im=pow(Ipr[t],0.5)*sin(Phipr[t]); 
} 
  fftw_one(fplan,temp,prsp0); 
 
} 
  
 
 for (z=0; z <= (res[1]-1); z++) 
{ 
    for (t=0; t<= (res[0]-1); t++) 
{ 
  IandPhi[0]=Ipu[t]; 
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  IandPhi[1]=Phipu[t]; 
  IandPhi[2]=Ipr[t]; 
  IandPhi[3]=Phipr[t]; 
 
  //  printf("\nIpu before %e ,z=%d, t= %d",Ipu[t],z,t); 
  // printf("\n increment is %f",inc_z); 
  rungekutta(inc_z,IandPhi,parameter); 
 
  Ipu[t]=IandPhi[0]; 
 
  // printf("\nIpu after %e,z= %d, t= %d", Ipu[t],z,t); 
 
  Phipu[t]=IandPhi[1]; 
  Ipr[t]=IandPhi[2]; 
  Phipr[t]=IandPhi[3];   
} 
 
} 
 
 
  for (t=0; t<= (res[0]-1); t++) 
{ 
  temp[t].re=pow(Ipu[t],0.5)*cos(Phipu[t]); 
  temp[t].im=pow(Ipu[t],0.5)*sin(Phipu[t]); 
} 
  fftw_one(fplan,temp,pump_spect); 
 
 for (t=0; t<= (res[0]-1); t++) 
{ 
  temp[t].re=pow(Ipr[t],0.5)*cos(Phipr[t]); 
  temp[t].im=pow(Ipr[t],0.5)*sin(Phipr[t]); 
} 
  fftw_one(fplan,temp,prob_spect); 
 
} 
 
 
 
  //     Ipump(z_res+1,t_res)=0; 
  //     Phipump(z_res+1,t_res)=0; 
  //     Iprob(z_res+1,t_res)=0; 
  //     Phiprob(z_res+1,t_res)=0; 
      
  //     Ipump(1,:)=initpulse_I(pu_delay,pu_ratio,t_res,pu_wid); 
       
  //     Phipump(1,:)=initpulse_Phi(pu_delay,pu_ratio,t_res,pu_wid); 
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  //     Iprob(1,:)=initpulse_I(pr_delay,pr_ratio,t_res,pr_wid); 
 
  //     Phiprob(1,:)=initpulse_Phi(pr_delay,pr_ratio,t_res,pr_wid); 
    
  //     %test output 
  //     if(0) 
  //     tt=1:t_res 
  //     plot(tt,Ipump(1,tt),'--b') 
  //     hold on 
  //     plot(tt,Iprob(1,tt),'--g') 
  //     plot(tt,Phipump(1,tt),'--b') 
  //     hold on 
  //     plot(tt,Phiprob(1,tt),'--g') 
  //     hold off 
  //     end 
 
 
  //     z_inc=1/z_res; 
 
  //     for zstep=1:z_res; 
  //     for tt=1:t_res; 
  //     
temp=rk(z_inc,Ipump(zstep,tt),Phipump(zstep,tt),Iprob(zstep,tt),Phiprob(zstep,
tt),alpha,beta,gamma); 
 
  //     Ipump(zstep+1,tt)= temp(1); 
  //     Phipump(zstep+1,tt)= temp(2); 
  //     Iprob(zstep+1,tt)= temp(3); 
  //     Phiprob(zstep+1,tt)= temp(4); 
 
 
  //     end 
  //     end 
 
  //     %test output 
  //     if(0) 
  //     tt=1:t_res; 
 
  //     subplot(2,1,1) 
 
  //     plot(tt,Ipump(z_res+1,tt),'--b') 
  //     hold on 
  //     plot(tt,Iprob(z_res+1,tt),'--g') 
  //     hold off 
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//     subplot(2,1,2) 
 
  //     plot(tt,Phipump(z_res+1,tt),'--b') 
  //     hold on 
  //     plot(tt,Phiprob(z_res+1,tt),'--g') 
  //     hold off 
 
  //     end 
 
  //     for t=1:t_res; 
 
  //     Apump(t)=(Ipump(z_res+1,t)^0.5)*exp(i*Phipump(z_res+1,t)); 
 
  //     Aprob(t)=(Iprob(z_res+1,t)^0.5)*exp(i*Phiprob(z_res+1,t)); 
 
  //     end 
 
 
 
 
  //      PumpSpect_0=fft(Apump); 
 
  //      ProbSpect_0=fft(Aprob); 
 
  //      fcenter=ceil((t_res+1)/2); 
  //      dt=ceil(fcenter-(t_res+1)/2); 
  //      for t=fcenter:t_res; 
 
  //      PumpSpect(t)=PumpSpect_0(t-fcenter+1); 
 
  //ProbSpect(t)=ProbSpect_0(t-fcenter+1); 
 
  //end 
 
  //for t=1:fcenter-1; 
 
  //PumpSpect(t)=PumpSpect_0(t+fcenter-dt); 
 
  //ProbSpect(t)=ProbSpect_0(t+fcenter-dt); 
 
  //end 
 
 
 
  //%test output 
  //if (0) 
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//tt=1:t_res; 
 
  //subplot(2,1,1) 
 
  //plot(tt,abs(PumpSpect(tt)),'--b') 
  //hold on 
  //plot(tt,angle(PumpSpect(tt)),'--g') 
  //hold off 
 
  //subplot(2,1,2) 
 
  //plot(tt,abs(ProbSpect(tt)),'--b') 
  //hold on 
  //plot(tt,angle(ProbSpect(tt)),'--g') 
  //hold off 
  //end 
//endspect=[PumpSpect',ProbSpect']; 
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file name: initpulse.c 
 
 
#include "srtbc.h" 
 
void initpulse(double *Ipu0, double *Phipu0, double *Ipr0, double *Phipr0, 
double *pulse_param, int *res) 
{ 
  //% this generates a 1D array with element number = resolution. width=width 
  //% centered at (resolution+1)/2, delayed by delayXwidth, amplitude= ratio  
double incpu,incpr; 
double center; 
 int t; 
//inc=1/width; 
 incpu=(double)(1/pulse_param[4]); 
 incpr=(double)(1/pulse_param[5]); 
 //center=(resolution+1)/2; 
 center=(double)((res[0]-1)/2); 
 //for  t=1:resolution; 
 
 // printf("\n pumpwid %f probwid %f incpu %f 
incpr %f",pulse_param[4],pulse_param[5],incpu,incpr); 
 for (t = 0; t <= res[0]-1; t++) 
   { 
 
     //pulse(t)=ratio*exp(-((t-center)*inc-delay)^2); 
    
     Ipu0[t]=pulse_param[0]*exp(-pow(((double)(((double)t-center)*incpu-
pulse_param[2])),2));/*pow((((double)t-center)*incpu-
pulse_param[2]),2.)*exp(t/10);*/ 
     Phipu0[t]=0; 
 
     Ipr0[t]=pulse_param[1]*exp(-pow(((double)(((double)t-center)*incpr-
pulse_param[3])),2)); 
 
     Phipr0[t]=0;   
 
     //printf("\n test %d",t); 
     //printf("\nIpu %e t %d",Ipu0[t],t); 
   }      
 //end; 
 
} 
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file name: rk.c 

 

 
#include "srtbc.h" 
void rungekutta(double h, double *IandPhi, double *parameter) 
{ 
  double F11,F12,F13,F14, 
         F21,F22,F23,F24, 
         F31,F32,F33,F34, 
         F41,F42,F43,F44; 
  double Ipu,Phipu,Ipr,Phipr; 
 
  Ipu=IandPhi[0]; 
  Phipu=IandPhi[1]; 
  Ipr=IandPhi[2]; 
  Phipr=IandPhi[3]; 
   
 
     
     F11=function1(Ipu,Phipu,Ipr,Phipr, parameter); 
     F21=function2(Ipu,Phipu,Ipr,Phipr, parameter); 
     F31=function3(Ipu,Phipu,Ipr,Phipr, parameter); 
     F41=function4(Ipu,Phipu,Ipr,Phipr, parameter); 
 
     
F12=function1(Ipu+(h/2)*F11,Phipu+(h/2)*F21,Ipr+(h/2)*F31,Phipr+(h/2)*F41,
parameter); 
     
F22=function2(Ipu+(h/2)*F11,Phipu+(h/2)*F21,Ipr+(h/2)*F31,Phipr+(h/2)*F41,
parameter); 
     
F32=function3(Ipu+(h/2)*F11,Phipu+(h/2)*F21,Ipr+(h/2)*F31,Phipr+(h/2)*F41,
parameter); 
     
F42=function4(Ipu+(h/2)*F11,Phipu+(h/2)*F21,Ipr+(h/2)*F31,Phipr+(h/2)*F41,
parameter); 
 
 
     
F13=function1(Ipu+(h/2)*F12,Phipu+(h/2)*F22,Ipr+(h/2)*F32,Phipr+(h/2)*F42,
parameter); 
     
F23=function2(Ipu+(h/2)*F12,Phipu+(h/2)*F22,Ipr+(h/2)*F32,Phipr+(h/2)*F42,
parameter); 
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F33=function3(Ipu+(h/2)*F12,Phipu+(h/2)*F22,Ipr+(h/2)*F32,Phipr+(h/2)*F42,
parameter); 
     
F43=function4(Ipu+(h/2)*F12,Phipu+(h/2)*F22,Ipr+(h/2)*F32,Phipr+(h/2)*F42,
parameter); 
 
     
F14=function1(Ipu+h*F13,Phipu+h*F23,Ipr+h*F33,Phipr+h*F43,parameter); 
     
F24=function2(Ipu+h*F13,Phipu+h*F23,Ipr+h*F33,Phipr+h*F43,parameter); 
     
F34=function3(Ipu+h*F13,Phipu+h*F23,Ipr+h*F33,Phipr+h*F43,parameter);  
     
F44=function4(Ipu+h*F13,Phipu+h*F23,Ipr+h*F33,Phipr+h*F43,parameter); 
 
      //Ipunext=Ipu+(h/6)*(F11+2*F12+2*F13+F14); 
      
      IandPhi[0]=Ipu+(h/6)*(F11+2*F12+2*F13+F14); 
 
      //Phipunext=Phipu+(h/6)*(F21+2*F22+2*F23+F24); 
       
      IandPhi[1]=Phipu+(h/6)*(F21+2*F22+2*F23+F24); 
      
      //Iprnext=Ipr+(h/6)*(F31+2*F32+2*F33+F34); 
  
      IandPhi[2]=Ipr+(h/6)*(F31+2*F32+2*F33+F34); 
 
      //Phiprnext=Phipr+(h/6)*(F41+2*F42+2*F43+F44); 
 
      IandPhi[3]=Phipr+(h/6)*(F41+2*F42+2*F43+F44); 
 
      
} 
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file name: F1.c 

 
 
#include "srtbc.h" 
double function1(double Ipu, double Phipu,double Ipr, double Phipr, double 
*parameter)  
{ 
 
double F1; 
//F1=-(alpha+(beta*Ipu))*Ipu; 
 F1=-
(parameter[0]+(parameter[1]*Ipu)+(ALPHA4*Ipu*Ipu)+(ALPHA6*Ipu*Ipu*Ipu))*I
pu; 
 return F1; 
 
} 
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file name: F2.c 

 
 
#include "srtbc.h" 
double function2(double Ipu, double Phipu, double Ipr, double Phipr, double 
*parameter) 
 
{ 
  double F2; 
 
  // F2= gamma*Ipu; 
  F2=(parameter[2]+(GAMMA4*Ipu)+(GAMMA6*Ipu*Ipu))*Ipu; 
  return F2; 
} 
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file name: F3.c 

 
 
#include "srtbc.h" 
double function3(double Ipu, double Phipu, double Ipr, double Phipr, double 
*parameter) 
{ 
  double F3; 
  //F3=-(alpha+(2*beta*Ipu))*Ipr; 
     F3=-
(parameter[0]+(2*parameter[1]*Ipu)+(3*ALPHA4*Ipu*Ipu)+(4*ALPHA6*Ipu*Ipu
*Ipu))*Ipr; 
     return F3; 
 
} 
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file name: F4.c  

 
 
#include "srtbc.h" 
double function4(double Ipu, double Phipu, double Ipr, double Phipr, double 
*parameter) 
{ 
  double F4; 
 
  //F4= 2*gamma*Ipu; 
     F4=((2*parameter[2])+(3*GAMMA4*Ipu)+(4*GAMMA6*Ipu*Ipu))*Ipu; 
     return F4; 
} 
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File name: srtbc.h 

 
 
#include "srtbcset.h" 
#include <stdio.h>  
#include <math.h>  
#include <stdlib.h>  
#include <fftw.h>  
#include <rfftw.h>  
 
extern void srtbc(double *inpowd,double *refpowd,double signal[][TRES], 
double pumppowd[][TRES], double probpowd[][TRES],int *res, double 
*pulse_param, double *parameter, double *delayparam); 
 
extern void propogate(fftw_plan fplan,fftw_complex *temp,fftw_complex 
*pusp0, fftw_complex *prsp0, fftw_complex *pump_spect, fftw_complex 
*prob_spect,double *Ipu,double *Phipu, double *Ipr, double *Phipr, int *res, 
double *pulse_param, double *parameter,int init); 
 
extern void initpulse(double *Ipu0, double *Phipu0, double *Ipr0, double 
*Phipr0, double *pulse_param, int *res); 
 
extern void rungekutta(double h, double *IandPhi, double *parameter); 
 
extern double function1(double Ipu, double Phipu,double Ipr, double Phipr, 
double *parameter);  
 
extern double function2(double Ipu, double Phipu, double Ipr, double Phipr, 
double *parameter); 
 
extern double function3(double Ipu, double Phipu, double Ipr, double Phipr, 
double *parameter); 
 
extern double function4(double Ipu, double Phipu, double Ipr, double Phipr, 
double *parameter); 
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file name: srtbcset.h 

 
 
#define TRES 256 //number of bin in time  
 
#define ZRES 128  //number of bin in z 
 
#define PUMPR 11  //initial pump peak intensity nornalized by prob  
#define PROBR 1   // set to 1 
#define PUMPDELAY 0   // not used explicitly, set to 0 
#define PROBDELAY 0   // not used explicitly, set to 0 
#define PUMPWID 20    //number of bin from center when intensity drop to 1/e 
#define PROBWID 20 
 
#define ALPHA 0.01*0 
#define BETA 0.*1*0.3*0.05780467//0*(-0.01377/11) //((0.018856/15)*0.6) 
#define GAMMA 1*0.05780467//(0.28*0.05)*20*0.7*0.85*0.9*1.2 
//((0.020076/15)*0.6) 
#define ALPHA4 -0.001//(-0.026*0.05*0.05*20*20)*1.2*1.2 
#define GAMMA4 1.945618*0.1*0.1*0//(-
0.018*0.05*0.05*20*20)*0.7*0.92*0.9*1.2*1.2 
#define ALPHA6 0//(0.00135*0.05*0.05*0.05*20*20*20)*1.2*1.2*1.2 
#define GAMMA6 0 
 
 
#define MAXDELAY 8  //max delay of each side normalized by pumpwidth as 
defined above 
#define DELAYRES 200  // number of bin for delay  
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file name: cut.m 

 
 
function []=cut(file,griddetune) 
 
load(file,'dimensions','normalization','parameters','pulseparameters','inputprob
psd','referencepsd','signal','probpsd') 
 
 
delay_res=dimensions(2) 
maxdelay=normalization(2) 
t_res=dimensions(1) 
FWHM=normalization(1) 
ALPHA=parameters(1) 
BETA=parameters(2) 
GAMMA=parameters(3) 
PUMPI=pulseparameters(1) 
PROBI=pulseparameters(2) 
PUMPWID=pulseparameters(3) 
PROBWID=pulseparameters(4) 
 
 
delay_center=(delay_res+1)/2 
 
delay_inc=(2*maxdelay)/delay_res 
 
grid_unitdelay = 1/delay_inc 
 
f_center=ceil((t_res+1)/2) 
 
 
 
delay=1:delay_res; 
 
 
%sig=signal(f_center+griddetune,:) 
 
     sig=signal(f_center+floor(griddetune),:)+(signal(f_center+ceil(griddetune),:)-
signal(f_center+floor(griddetune),:))*(griddetune-floor(griddetune)); 
sigmax=max(sig) 
sigmin=min(sig) 
figure 
plot(sig(delay)),grid on,whitebg('white'); 
 
%detune=1:t_res; 
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%detune=(f_center-
floor(FWHM*detunerange)):(f_center+floor(FWHM*detunerange)) 
 %    signal(detune,delay); 
      
 if(0) 
figure 
     mesh(((delay-delay_center)*delay_inc),((detune-
f_center)/FWHM),signal(detune,delay)),ylabel('Normalized 
Detune','FontSize',12),xlabel('Normalized 
Delay','FontSize',12),zlabel('Transmission Change','Fontsize',12),shading 
interp,colormap(cool(512)),colorbar,whitebg('black'),title(['SRTBC Signal 
Surface, alpha=',num2str(ALPHA),',beta=',num2str(BETA),',gamma=', 
num2str(GAMMA),',pumpI0=',num2str(PUMPI),',probI0=',num2str(PROBI)],'Fo
ntSize',12),grid on 
end 
  if(0) 
figure 
     meshc(((delay-delay_center)*delay_inc),((detune-
f_center)/FWHM),probpsd(detune,delay)),ylabel('Normalized 
Detune','FontSize',12),xlabel('Normalized 
Delay','FontSize',12),zlabel('PSD','Fontsize',12),shading 
interp,colormap(cool(512)),colorbar,whitebg('black'),title(['SRTBC Prob PSD, 
alpha=',num2str(ALPHA),',beta=',num2str(BETA),',gamma=', 
num2str(GAMMA),',pumpI0=',num2str(PUMPI),',probI0=',num2str(PROBI)],'Fo
ntSize',12),grid on 
end 
  if(0) 
figure 
       f=1:t_res; 
  whitebg('white'), grid on 
    plot(f,inputprobpsd(f),'--g'); 
end 
  if(0) 
figure 
  plot(f,referencepsd(f),'-b'); 
end 
%     surfl(((delay-delay_center)*delay_inc),((detune-
f_center)/FWHM),probpsd(detune,delay)),ylabel('Normalized 
Detune','FontSize',12),xlabel('Normalized 
Delay','FontSize',12),zlabel('Transmission Change','Fontsize',12),ylim([-
detunerange detunerange]),xlim([ -(delay_inc*delay_res/2) 
(delay_inc*delay_res/2)]),shading 
interp,colormap(cool(512)),colorbar,whitebg('black'),title('SRTBC Signal 
Surface','FontSize',15),grid on 
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%  surfl(((delay-delay_center)*delay_inc),((detune-
f_center)/FWHM),signal(detune,delay)),ylabel('Normalized 
Detune','FontSize',12),xlabel('Normalized 
Delay','FontSize',12),zlabel('Transmission Change','Fontsize',12),ylim([-
detunerange detunerange]),xlim([ -(delay_inc*delay_res/2) 
(delay_inc*delay_res/2)]),shading 
interp,colormap(cool(512)),colorbar,whitebg('black'),title('SRTBC Signal 
Surface','FontSize',15),grid on 
 
 
 
%hold on 
%surfl(((detune-f_center)/FWHM),((delay-
delay_center)*delay_inc),trace_pt_f(delay,detune)+2),xlabel('Normalized 
Detune','FontSize',12),ylabel('Normalized 
Delay','FontSize',12),zlabel('Transmission Change','Fontsize',12),xlim([-
detunerange detunerange]),ylim([ -(delay_inc*delay_res/2) 
(delay_inc*delay_res/2)]),shading 
interp,colormap(cool(512)),colorbar,whitebg('black'),title('SRTBC Signal 
Surface','FontSize',15),grid on 
 
sigt=sig'; 
 
f=strrep(file,'.mat','_') 
 
space=99999999; 
 
     
save(['/home/yc245/csrtbchiorder/',f,'cut_',num2str(griddetune),'.txt'],'dimensio
ns','normalization','parameters','pulseparameters','griddetune','sigmax','sigmin',
'sigt','-ASCII','-DOUBLE') 
 
 
clear 
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file name: fulldisplayc.m 
 
 
function []=full_display(file,detunerange) 
 
load(file,'dimensions','normalization','parameters','pulseparameters','inputprob
psd','referencepsd','signal','probpsd') 
 
 
delay_res=dimensions(2) 
maxdelay=normalization(2) 
t_res=dimensions(1) 
FWHM=normalization(1) 
ALPHA=parameters(1) 
BETA=parameters(2) 
GAMMA=parameters(3) 
PUMPI=pulseparameters(1) 
PROBI=pulseparameters(2) 
PUMPWID=pulseparameters(3) 
PROBWID=pulseparameters(4) 
 
 
delay_center=(delay_res+1)/2 
 
delay_inc=(2*maxdelay)/delay_res 
 
grid_unitdelay = 1/delay_inc 
 
f_center=ceil((t_res+1)/2) 
 
 
 
delay=1:delay_res; 
%detune=1:t_res; 
detune=(f_center-
floor(FWHM*detunerange)):(f_center+floor(FWHM*detunerange)) 
     signal(detune,delay); 
      
 
figure 
     mesh(((delay-delay_center)*delay_inc),((detune-
f_center)/FWHM),signal(detune,delay)),ylabel('Normalized 
Detune','FontSize',12),xlabel('Normalized 
Delay','FontSize',12),zlabel('Transmission Change','Fontsize',12),shading 
interp,colormap(cool(512)),colorbar,whitebg('black'),title(['SRTBC Signal 
Surface, alpha=',num2str(ALPHA),',beta=',num2str(BETA),',gamma=',  
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num2str(GAMMA),',pumpI0=',num2str(PUMPI),',probI0=',num2str(PROBI)],'Fo
ntSize',12),grid on 
 
 
figure 
     meshc(((delay-delay_center)*delay_inc),((detune-
f_center)/FWHM),probpsd(detune,delay)),ylabel('Normalized 
Detune','FontSize',12),xlabel('Normalized 
Delay','FontSize',12),zlabel('PSD','Fontsize',12),shading 
interp,colormap(cool(512)),colorbar,whitebg('black'),title(['SRTBC Prob PSD, 
alpha=',num2str(ALPHA),',beta=',num2str(BETA),',gamma=', 
num2str(GAMMA),',pumpI0=',num2str(PUMPI),',probI0=',num2str(PROBI)],'Fo
ntSize',12),grid on 
 
  if(0) 
figure 
       f=1:t_res; 
  whitebg('white'), grid on 
    plot(f,inputprobpsd(f),'--g'); 
end 
  if(0) 
figure 
  plot(f,referencepsd(f),'-b'); 
end 
%     surfl(((delay-delay_center)*delay_inc),((detune-
f_center)/FWHM),probpsd(detune,delay)),ylabel('Normalized 
Detune','FontSize',12),xlabel('Normalized 
Delay','FontSize',12),zlabel('Transmission Change','Fontsize',12),ylim([-
detunerange detunerange]),xlim([ -(delay_inc*delay_res/2) 
(delay_inc*delay_res/2)]),shading 
interp,colormap(cool(512)),colorbar,whitebg('black'),title('SRTBC Signal 
Surface','FontSize',15),grid on 
 
%  surfl(((delay-delay_center)*delay_inc),((detune-
f_center)/FWHM),signal(detune,delay)),ylabel('Normalized 
Detune','FontSize',12),xlabel('Normalized 
Delay','FontSize',12),zlabel('Transmission Change','Fontsize',12),ylim([-
detunerange detunerange]),xlim([ -(delay_inc*delay_res/2) 
(delay_inc*delay_res/2)]),shading 
interp,colormap(cool(512)),colorbar,whitebg('black'),title('SRTBC Signal 
Surface','FontSize',15),grid on 
 
 
 
%hold on 
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%surfl(((detune-f_center)/FWHM),((delay-
delay_center)*delay_inc),trace_pt_f(delay,detune)+2),xlabel('Normalized 
Detune','FontSize',12),ylabel('Normalized 
Delay','FontSize',12),zlabel('Transmission Change','Fontsize',12),xlim([-
detunerange detunerange]),ylim([ -(delay_inc*delay_res/2) 
(delay_inc*delay_res/2)]),shading 
interp,colormap(cool(512)),colorbar,whitebg('black'),title('SRTBC Signal 
Surface','FontSize',15),grid on 
 
clear 
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