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Fiber lasers offer several clear advantages over solid-state systems: compact de-

sign, thermal management, minimal alignment, spatial beam quality and low cost.

Consequently, fiber systems have become a valued option for applications requir-

ing continuous-wave or long-pulse operation. However, for pulsed operation the

benefits of fiber come at the cost of tighter confinement of the light, leading to the

accumulation of nonlinear optical effects which can rapidly degrade the pulse. For

this reason, the performance of mode-locked fiber lasers has until recently lagged

behind that of their solid-state counterparts. Nonetheless, recent developments

in managing nonlinearity have led to mode-locked fiber systems with performance

that directly competes with solid-state systems.

The aim of this thesis is to investigate the ultrashort pulse propagation physics

which helps to render the nonlinear limitations of fiber systems obsolete. From

the development of dissipative soliton mode-locking, which allows for an order of

magnitude increase in pulse energies, to mode-locking based on self-similar pulse

evolution which allows for the shortest pulses from a fiber laser to date, this thesis

covers recent significant developments in laser mode-locking in systems featuring

normal group-velocity dispersion. In addition, preceding pulse evolutions which

were investigated experimentally, such as lasers based on self-similar propagation in

a passive fiber and so-called “wave-breaking free” lasers are analyzed numerically

and integrated theoretically with recent developments. Finally, several notable



future directions in fiber laser research are identified and a new technique for the

possible generation of ever-higher performance mode-locked fiber lasers is explored.



BIOGRAPHICAL SKETCH

William Henry Renninger was born in Red Bank, New Jersey in 1983. After a

couple years of moving around New Jersey, his family settled in rural Hunterdon

County, New Jersey. Here he received a high quality public education for twelve

years before completing high school. There was never any doubt that he wanted

to be a physicist from the moment he knew he no longer wanted to be a bad-guy-

slaying action hero from Saturday morning cartoons. As a consequence his choice

over colleges was easily simplified.

Will enrolled at Rensselaer Polytechnic Institute (RPI) in Troy, NY for his

freshman year of college in 2002. Upon completion of his initial year, while appre-

ciating the quality of eduction at RPI, he felt unsatisfied with the environment,

attitude and atmosphere surrounding this school. It was then, in 2003, that he

began his journey at Cornell University as a transfer student in the School of Elec-

trical and Computer Engineering. Finally, after a few short months, he found his

home as a student in the School of Applied and Engineering Physics. Here he

found the students, faculty and environment all to be exceptional and he enjoyed

every class and experience. During his undergraduate years, he held two summer

internships at Agere Systems in Allentown, PA. As a senior, after being intrigued

by his nonlinear optics course, Will worked for Professor Frank Wise as an un-

dergraduate researcher. At this point, knowing he wanted to pursue a doctoral

degree, and having already found his perfect environment, staying on to work as

a Ph.D. candidate under Professor Wise was an easy choice.

Will continued on to research with Professor Wise on nonlinear optics and

ultrafast pulse propagation phenomena. Having had a wonderful experience in this

group, he will proudly stay in the Wise group for another year as a post-graduate

researcher.

iii



To my family, Mom, Dad, Rob, Ed, Richard, and Maria for their undying

support.

iv



ACKNOWLEDGEMENTS

It is often said that “the quality of one’s Ph.D. experience is entirely determined

by the quality of one’s Ph.D. advisor.” I’ve come to understand how true this

statement really is. I can never be thankful enough to Professor Frank Wise for

his depth of knowledge, sharply skilled analysis, and perhaps more importantly,

his ability to work with any student at any level. His patience, flexibility, true

passion for teaching and adept management style has allowed for simply an amazing

learning experience as a student in his group. As it is often hard to know a good

advisor before working with him or her, I consider myself truly lucky to have landed

in Professor Wise’s group.

I am also thankful for Professor Gaeta, who as my undergraduate advisor helped

steer me in the right direction, as well as to the many other faculty at Cornell,

whose many inspiring lectures keep the wonder of learning alive every day. I’ll

never forget when Professor Gaeta told us in his intro quantum mechanics class

that “if you walk into a wall enough times you will eventually go through it!”

As a Ph.D. student I am more than grateful for the students, particularly Andy

Chong and Joel Buckley, who took time from their busy day to teach me even

the tiniest details about everything in the lab. This group has always been very

supportive and collaborative and so thank you Lyuba Kuznetsova, Shian Zhou,

Khanh Kieu, Heng Li, Hui Liu and Erin Stranford. Also, an extra big thank

you to the guys who I would consistently ask questions to about topics of any

nature and who always made the time to have a discussion, Adam Bartnik and

Simon Lefrancois. Last but not least, I would like to thank our many stimulating

collaborators, particularly Nathan Kutz and Brandon Bale for their enthusiastic

support.

v



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Bibliography xvi

1 Introduction 1
1.1 Pulse propagation in a fiber . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Mode-locking of lasers . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Soliton mode-locking . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Stretched-pulse mode-locking . . . . . . . . . . . . . . . . . 9
1.2.3 Dissipative soliton mode-locking . . . . . . . . . . . . . . . . 10
1.2.4 Passive similariton mode-locking . . . . . . . . . . . . . . . . 10
1.2.5 Amplifier similariton mode-locking . . . . . . . . . . . . . . 11

1.3 Fiber laser components and useful implementations . . . . . . . . . 13
1.3.1 Saturable absorbers . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Spectral filters . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Birefringent filter . . . . . . . . . . . . . . . . . . . . . . . . 17
Dispersive element/waveguide filter . . . . . . . . . . . . . . 19

1.4 Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Bibliography 24

2 Dissipative soliton fiber lasers 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Theory: analytic approach . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Theory: simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Temporal evolution . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.2 Variation of laser parameters . . . . . . . . . . . . . . . . . . 40

Nonlinear phase shift . . . . . . . . . . . . . . . . . . . . . . 40
Spectral filter bandwidth . . . . . . . . . . . . . . . . . . . . 42
Group-velocity dispersion . . . . . . . . . . . . . . . . . . . 43
Summary of the effects of laser parameters . . . . . . . . . . 44
Design guidelines . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.3 Experimental confirmation . . . . . . . . . . . . . . . . . . . 47
2.4 Physical limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4.1 Area theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.2 Pulse energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



2.4.3 Pulse duration . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5 Practical extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5.1 Core-size scaling . . . . . . . . . . . . . . . . . . . . . . . . 61
Double-clad fiber . . . . . . . . . . . . . . . . . . . . . . . . 62
Photonic crystal fiber . . . . . . . . . . . . . . . . . . . . . . 63
Chirally-coupled core fiber . . . . . . . . . . . . . . . . . . . 66

2.5.2 Environmental stability . . . . . . . . . . . . . . . . . . . . . 69
2.6 Giant-chirp oscillators . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography 81

3 Pulse shaping mechanisms in normal-dispersion mode-locked fiber
lasers 85
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.2 Dissipative soliton fiber lasers . . . . . . . . . . . . . . . . . . . . . 87
3.3 Dispersion-managed fiber lasers . . . . . . . . . . . . . . . . . . . . 91

3.3.1 Passive self-similar fiber lasers . . . . . . . . . . . . . . . . . 93
3.3.2 Stretched dissipative soliton fiber lasers . . . . . . . . . . . . 99

3.4 Amplifier-similariton fiber lasers . . . . . . . . . . . . . . . . . . . . 102
3.5 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography 109

4 Amplifier similariton fiber lasers 112
4.1 Initial demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.1.2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . 114
4.1.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . 117
4.1.4 Discussion and extensions . . . . . . . . . . . . . . . . . . . 118
4.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2 Dispersion-mapped amplifier similariton fiber lasers . . . . . . . . . 123
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.2.2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . 125
4.2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . 128
4.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.3 Bandwidth extended amplifier similariton mode-locking . . . . . . . 132

Bibliography 135

5 Future directions 138
5.1 Mode-locking with dispersion-decreasing fiber . . . . . . . . . . . . 141

Bibliography 146

vii



A Chapter 3 simulation parameters 147
A.1 Dissipative soliton cavity . . . . . . . . . . . . . . . . . . . . . . . . 147
A.2 Dispersion-managed cavity . . . . . . . . . . . . . . . . . . . . . . . 147

A.2.1 Passive self-similar mode-locking . . . . . . . . . . . . . . . 148
A.2.2 Stretched dissipative soliton mode-locking . . . . . . . . . . 148

viii



LIST OF TABLES

3.1 Comparison of important features: DS: dissipative soliton, SDS:
stretched dissipative soliton, SS: self-similar. . . . . . . . . . . . . . 105

ix



LIST OF FIGURES

1.1 Basic schematic for the complete operation of NPE. HWP: half-
waveplate and QWP: quarter-waveplate. . . . . . . . . . . . . . . . 14

1.2 Variation of the modulation depth of a birefringent filter as a func-
tion of the angle from the optical axis. . . . . . . . . . . . . . . . . 18

1.3 Spectral filter bandwidth as a function of plate thickness for 1-µm
wavelength with a crystal quartz birefringent material. FWHM:
Full-width at half-maximum. . . . . . . . . . . . . . . . . . . . . . 19

1.4 Schematic of a dispersive element waveguide filter. . . . . . . . . . 20
1.5 (a) Example filter profile; filter bandwidth vs. separation distance

for (b) a 600 lines/mm grating, (c) a 300 lines/mm grating and (d)
2 SF11 prisms operating at 1030-nm wavelength. . . . . . . . . . . 21

2.1 (a) Pulse duration and energy plotted vs. GVD parameter D. (b)
Energy, (c) pulse duration, and (d) chirp (normalized to that of
the pulse with B=-0.9) plotted vs. B. Dotted lines separate the
two classes of solutions. Italicized numbers correspond to solutions
shown in Figure 2.2. Notice the break in the x-axes in (b) and (c).
Figure taken from Ref. [1]. . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Pulse solutions categorized by the value of B. Top row: temporal
profiles. Middle row: representative spectral shapes for the indi-
cated values of B. Bottom row: corresponding autocorrelations of
the respective dechirped analytical solutions. The intensity profile
is shown for B=35. Figure taken from Ref. [1]. . . . . . . . . . . . 33

2.3 Schematic of the experimental setup; PBS: polarization beam split-
ter; HWP: half-wave plate; QWP: quarter-wave plate; WDM: wave-
length division multiplexer. . . . . . . . . . . . . . . . . . . . . . . 34

2.4 (a) Output spectrum and (b) autocorrelation of the dechirped pulse. 35
2.5 Top row: representative experimental spectra corresponding to the

theoretical pulses of Figure 2.2. Bottom row: autocorrelation data
for the corresponding dechirped pulses. The rightmost pulse is the
respective output intensity profile. Figure taken from Ref. [1]. . . . 36

2.6 Temporal and spectral evolution of a typical numerically simulated
dissipative soliton fiber laser; SA: saturable absorber, SF: spectral
filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Output spectrum with ΦNL: (a) ∼ 1π, (b) ∼ 4π, (c) ∼ 7π, (d)
∼ 16π. Figure taken from Ref. [2]. . . . . . . . . . . . . . . . . . . 41

2.8 Laser performance vs. ΦNL: (a) pulse energy, (b) breathing ratio,
(c) dechirped pulse duration, (d) chirp. Figure taken from Ref. [2]. 42

2.9 Output spectrum with spectral filter bandwidth: (a) 25 nm, (b) 15
nm, (c) 12 nm, (d) 8 nm. Figure taken from Ref. [2]. . . . . . . . . 43

x



2.10 Laser performance vs. spectral filter bandwidth: (a) breathing
ratio, (b) dechirped pulse duration, (c) chirp. Figure taken from
Ref. [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.11 Output spectrum with GVD: (a) 0.52 ps2, (b) 0.31 ps2, (c) 0.24
ps2, (d) 0.10 ps2. Figure taken from Ref. [2]. . . . . . . . . . . . . . 44

2.12 Laser performance vs. GVD: (a) breathing ratio, (b) dechirped
pulse duration, (c) chirp. Figure taken from Ref. [2]. . . . . . . . . 45

2.13 Output spectrum vs. laser parameters. Figure taken from Ref. [2]. 45
2.14 Experimental results; top: simulated output spectrum with ΦNL:

(a) ∼1π, (b) ∼3π, (c) ∼4π, (d) ∼8π; middle: experimental output
spectrum with approximated ΦNL: (e) ∼1π, (f) ∼3π, (g) ∼4π,
(h) ∼8π; bottom: corresponding interferometric AC of dechirped
output pulses. Figure taken from Ref. [2]. . . . . . . . . . . . . . . 49

2.15 Experimental and numerically simulated laser performance vs. ap-
proximate ΦNL; dots: experiment, lines: numerical simulation; (a)
pulse energy before the NPE port, (b) breathing ratio, (c) dechirped
pulse duration, (d) chirp. Figure taken from Ref. [2]. . . . . . . . . 50

2.16 Variation of the pulse energy as a function of the pulse parameter,
B. The dotted line separates solutions with |B| <1 for δ >0 from
those with B>1 for δ <0. Insets: spectral profiles plotted for the
respective values of B. Figure taken from Ref. [3]. . . . . . . . . . . 53

2.17 Top: theoretical spectra for increasing pulse energy, as B ap-
proaches -1; middle: simulated spectra with increasing saturation
energy; bottom: measured spectra with increasing pump power.
The rightmost spectra correspond to the birth of the second pulse
in the cavity. Figure taken from Ref. [3]. . . . . . . . . . . . . . . . 54

2.18 Mode-locked output power vs. pump power. The spectra on the
right are for the corresponding pump levels. Figure taken from
Ref. [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.19 a) Spectra transmitted (dotted) and rejected (solid) from the NPE
port, b) dechirped autocorrelation (∼165 fs) and the autocorrela-
tion of the zero-phase Fourier-transform of the spectrum (∼140 fs,
inset), c) simulated spectrum, d) simulated dechirped pulse (∼195
fs). Figure taken from Ref. [4]. . . . . . . . . . . . . . . . . . . . . 57

2.20 Short pulse numerical simulation: a) spectrum and b) dechirped
intensity profile (inset: 4.3-ps chirped pulse directly from the laser).
Figure taken from Ref. [5]. . . . . . . . . . . . . . . . . . . . . . . . 59

2.21 Schematic of laser: QWP: quarter-wave plate; HWP: half-wave
plate; PBS: polarizing beam-splitter; WDM: wavelength-division
multiplexer. Figure taken from Ref. [5]. . . . . . . . . . . . . . . . 60

2.22 Short pulse experimental results: a) spectrum from output 2 (spec-
trum from output 1 inset) and b) 68-fs dechirped autocorrelation
from output 2 (autocorrelation of transform-limited pulse inset).
Figure taken from Ref. [5]. . . . . . . . . . . . . . . . . . . . . . . . 61

xi



2.23 (a) Output spectrum and (b) intensity autocorrelation of the
dechirped pulse. Inset: interferometric autocorrelation of the
dechirped pulse. Figure taken from Ref. [6]. . . . . . . . . . . . . . 63

2.24 Experimental PCF ring laser design: DM, dichroic mirror; HWP
and QWP, half- and quarter-wave plates; PBS, polarizing beam-
splitter; BRP, birefringent plate; DDL, dispersive delay line. Figure
taken from Ref. [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.25 Mode-locked output: (a) spectrum, (b) dechirped interferomet-
ric autocorrelation (gray) and transform-limited envelope (dotted
black), (c) RF noise spectrum, 2 MHz span, 1 kHz resolution and
(d) pulse train, 50 ns/div and 400 kHz bandwidth. Figure taken
from Ref. [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.26 (a) Side view of angle-cleaved CCC fiber. (b) CCC fiber oscillator
design: DM, dichroic mirror; PBS, polarizing beamsplitter; DDL,
dispersive delay line; BRP, birefringent plate; QWP and HWP,
quarter- and half-wave plate; HR, dielectric mirror. Figure taken
from Ref. [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.27 (Mode-locked output: (a) spectrum (0.1-nm res.), (b) chirped auto-
correlation, and (c) dechirped interferometric autocorrelation. (d)
Spectrum after propagation trough 1 m of SMF (solid) compared
to simulation (dashed). Figure taken from Ref. [8]. . . . . . . . . . 68

2.28 Schematic of an environmentally-stable linear dissipative soliton
fiber laser: QWP: quarter-wave plate; HWP: half-wave plate; PBS:
polarizing beam-splitter; WDM: wavelength-division multiplexer;
HR: high reflection mirror. All components are PM components.
Figure taken from Ref. [9]. . . . . . . . . . . . . . . . . . . . . . . . 70

2.29 Output (a) spectrum and (b) dechirped autocorrelation of the
environmentally-stable dissipative soliton laser. Inset: chirped au-
tocorrelation. Figure taken from Ref. [9]. . . . . . . . . . . . . . . . 71

2.30 Components of fiber CPA systems. The small boxes inside the
giant-chirp oscillator box represent the components of a standard
CPA system that are replaced by the giant-chirp oscillator. Figure
taken from Ref. [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.31 Variation of exact solution normalized pulse parameters with nor-
malized dispersion. Figure taken from Ref. [10]. . . . . . . . . . . . 73

2.32 Giant-chirp oscillator: a) spectrum and b) pulse measured by a de-
tector with 50-ps resolution. c) Solid: amplified spectrum; dotted:
amplified spontaneous emission spectrum and d) autocorrelation of
amplified and dechirped pulse. The pulse duration assuming an ap-
proximate deconvolution factor of 1.5 is shown. Figure taken from
Ref. [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.33 Schematic of experimental system. QWP: quarter wave plate;
HWP: half wave plate; SMF: single-mode fiber. . . . . . . . . . . . 77

xii



2.34 562-kHz oscillator: output (a) spectrum; (b) pulse; (c) calculated
transform-limited pulse; and (d) dechirped autocorrelation. . . . . 78

3.1 Schematic of the simplest all-normal dispersion dissipative soliton
laser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2 Evolution of the (a) spectrum and (b) temporal profile of a DS
plotted after the filter (solid), after the fiber (dashed), and after the
saturable absorber (dotted); (d) evolution of the temporal phase in
the fiber section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3 Schematic of an all-normal dispersion dissipative soliton laser with
physical processes separated for clarity. . . . . . . . . . . . . . . . . 90

3.4 Evolution of the: (a) spectrum, (b) pulse, and (c) temporal phase of
the solution to a normal dispersion oscillator plotted after the filter
(solid), after the GVD (dashed), after the nonlinearity (dotted),
and after the saturable absorber (dashed-dotted). (d) Change in
phase due to the GVD (solid), nonlinearity (dashed), and spectral
filter (dotted). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Qualitative illustration of the amplitude and phase balances in a
DS laser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.6 Schematic of a typical 1-µm dispersion-managed fiber laser. . . . . 93
3.7 Evolution of the (a) pulse duration (the full-width at half of the

maximum) and (b) spectral bandwidth (the full-width at a fifth of
the maximum) and output (c) spectra and (d) chirped pulses for
self-similar (solid) and stretched dissipative soliton (dashed) mode-
locked pulses given identical cavity parameters. DDL: dispersive
delay line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.8 (a) Spectrum after the first SMF and (b) temporal evolution of the
DS (solid) and self-similar (dashed) pulses. (c) Pulse after the first
SMF for the DS and the (d) self-similar pulses; the dotted lines
represent parabolic fits. . . . . . . . . . . . . . . . . . . . . . . . . 96

3.9 (a) Spectrum after the first SMF and (b) temporal evolution of the
DS (solid) and self-similar (dashed) pulses. Pulse after the first
SMF for the (c) DS and the (d) self-similar pulses; the dashed lines
represent parabolic fits. Temporal evolution of the pulse in the first
section of the fiber of the (e) DS laser and the (f) self-similar laser;
the dashed (solid) line represents propagation through half (all) of
the fiber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.10 Evolution of the: (a) Spectrum, (b) pulse, and (c) temporal phase of
the solution to a normal dispersion oscillator plotted after the filter
(solid), after the GVD (dashed), after the nonlinearity (dotted),
and after the saturable absorber (dashed-dotted). (d) Change in
phase due to the SMF (dashed), anomalous GVD (dashed), and
spectral filter (dotted). . . . . . . . . . . . . . . . . . . . . . . . . . 98

xiii



3.11 Qualitative illustration of the amplitude and phase balances in a
passive self-similar laser. . . . . . . . . . . . . . . . . . . . . . . . . 99

3.12 Evolution of (a) pulse duration and (b) spectral bandwidth, and
output (c) spectra and (d) pulses of an SDS laser for 1 nJ (dotted
line), 4 nJ (dashed line), and 12 nJ (solid line) intra-cavity pulse
energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.13 Illustration of the local attraction in an amplifier similariton fiber
laser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.14 Cartoon schematic of an amplifier similariton fiber laser. . . . . . . 103
3.15 (a) Cross-correlation (C.C.) of the pulse (with dotted parabolic fit)

and (b) spectrum after propagation through the gain fiber. . . . . . 104

4.1 (a) Evolution of the FWHM pulse duration (filled) and spectral
bandwidth (open) in the cavity. The components of the laser are
shown above the graphs. (b) The output pulse at the end of the
gain fiber (solid) and a parabolic pulse with the same energy and
peak power (dotted). Inset: spectrum. The orthogonally polarized
pulse and spectrum (not shown) are essentially identical. . . . . . . 116

4.2 Evolution of the (a) M parameter comparing the pulse to a parabola
and the (b) M parameter comparing the pulse to the exact solution
of Ref. [11] in the oscillator. An additional 3 m of propagation was
added to each plot to emphasize convergence. . . . . . . . . . . . . 117

4.3 Experimental (a) cross-correlation of the pulse from the grating
reflection (solid) with a parabolic (dotted) and sech2 (dashed) fit;
(b) interferometric auto-correlation of the dechirped pulse from the
NPE output; and spectra from the (c) grating reflection and (d)
NPE output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4 Output spectrum and dechirped auto-correlation for modes with
(a,b) large spectral breathing, (c,d) short pulse duration, and (e,f)
long cavities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5 Schematic of the dispersion-mapped amplifier similariton fiber
laser: QWP, quarter-wave plate; HWP, half-wave plate; DDL, dis-
persive delay line (diffraction grating pair). . . . . . . . . . . . . . 126

4.6 Simulated evolution of the pulse chirp for four different values of
net cavity GVD: SA, saturable absorber; DDL, dispersive delay line.127

4.7 (a) Output spectrum and (b) dechirped autocorrelation of the
pulses from a laser with large net anomalous dispersion. Inset:
output spectrum with a logarithmic scale. . . . . . . . . . . . . . . 129

4.8 (a) Output spectrum and (b) dechirped autocorrelation of the
pulses from output 1 and (c) output spectrum and (d) direct auto-
correlation from output 2 from a laser operating at net dispersion
of 0.03 ps2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.9 (a) Output spectrum and (b) dechirped autocorrelation of pulses
from a laser with zero net cavity dispersion. . . . . . . . . . . . . 131

xiv



4.10 Conceptual schematic of the laser. HNLF: Highly nonlinear fiber. . 133
4.11 Fiber laser schematic. QWP: quarter-waveplate; HWP: half-

waveplate; PBS: polarizing beam-splitter. . . . . . . . . . . . . . . 133
4.12 Experimental (a) spectrum after the PCF, (b) output spectrum,

and (c) output autocorrelation signal after phase correction by MI-
IPS for a 21-fs pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1 GVD profile as a function of distance for a DDF designed to mode-
lock a 100-nJ fiber laser. . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2 Evolution of the (a) pulse duration, (b) spectral bandwidth, and
(c) parabolic closeness factor in a 200-m DDF. . . . . . . . . . . . 145

5.3 Output (a) pulse, (b) spectrum, and (c) dechirped pulse from a
200-m DDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xv



BIBLIOGRAPHY

[1] W. H. Renninger, A. Chong, and F. W. Wise, Physical Review A 77, 23814
(2008).

[2] A. Chong, W. H. Renninger, and F. W. Wise, J. Opt. Soc. Am. B 25, 140
(2008).

[3] W. H. Renninger, A. Chong, and F. W. Wise, J. Opt. Soc. Am. B 27, 1978
(2010).

[4] A. Chong, W. H. Renninger, and F. W. Wise, Opt. Lett. 32, 2408 (2007).

[5] A. Chong, W. H. Renninger, and F. W. Wise, Opt. Lett. 33, 2638 (2008).

[6] K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, Opt. Lett. 34, 593
(2009).

[7] S. Lefrançois, K. Kieu, Y. Deng, J. D. Kafka, and F. W. Wise, Opt. Lett. 35,
1569 (2010).

[8] S. Lefrancois, T. S. Sosnowski, C.-H. Liu, A. Galvanauskas, and F. W. Wise,
Opt. Express 19, 3464 (2011).

[9] A. Chong, W. H. Renninger, and F. W. Wise, Opt. Lett. 33, 1071 (2008).

[10] W. H. Renninger, A. Chong, and F. W. Wise, Opt. Lett. 33, 3025 (2008).

[11] M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D.
Harvey, Phys. Rev. Lett. 84, 6010 (2000).

xvi



CHAPTER 1

INTRODUCTION

Ultrafast science is a steadily growing field which has major impact over both

industrial applications as well as basic scientific research. Continued progress in

this field relies on the development of ultrashort pulse sources. Solid-state lasers

have traditionally fulfilled this role as a wide variety and arrangements for gain

media exist. Recent developments have come in Nd:glass [1], Yb:glass [2], and Yb:

tungstate [3]. But a particularly notable example for femtosecond pulse generation

is the mode-locked Ti:sapphire laser.

The Ti:sapphire laser, which owes its use to the discovery of Kerr-lens mode-

locking [4], has a combination of both spectroscopic and material properties which

allow for some very high-performance and useful lasers and amplifiers. In the last

two decades, these systems have been largely responsible for new developments in

ultrafast science and are still in great use today.

Unfortunately, Ti:sapphire-based systems come with some caveats. In general,

use of one of these systems requires trained personnel to keep it maintained and

running at its highest performance. This is due to environmental stress which

can cause free-space components to shift slightly, decreasing laser performance

dramatically. In addition, the cost of Ti:sapphire-based systems is still very high,

which creates an ultrafast science barrier of entry for many research groups. It is

clear that applications and research could benefit from a source of ultrafast light

which is cost-efficient and highly robust.

A new generation of ultrafast sources has been available in recent decades with

the rapid development of fiber laser technology. Fiber lasers can avoid the sensi-
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tivity to alignment which plagues solid-state sources because the light is confined

in the core of the waveguide. In particular, in systems where the fiber is fully con-

nected around the oscillator, all-fiber systems, there is no need for trained personnel

to make adjustments because there are no moving parts to adjust. Fiber systems

are also very cost-effective as compared to solid-state systems partly because they

benefit strongly from economies of scale owing to their use in the telecommunica-

tions industry. Additional benefits include good heat dissipation because the fibers

have a large surface to volume ratio. This allows for kilowatt devices.

These features have made fiber sources a staple for the generation of continuous-

wave and long pulse sources. However, the advantages of fiber-based systems also

comes with a caveat: the tight confinement in the core of the optical wave-guide

leads to higher brightness in the fiber, which leads to the accumulation of various

nonlinear optical effects, which in turn can rapidly degrade the pulse. Nonetheless,

substantial research has gone into the development of ultrashort pulsed sources

[5–8]. Recent results include picosecond pulses with ∼100-W average powers [9,

10]. This particular work was a landmark because it became clear that fiber-

based systems generating short pulses should compete directly with solid-state

laser performance.

Further progress in the development of high performance fiber sources relies on

various methods of managing or balancing the negative effects resulting from the

accumulation of nonlinear phase in the fiber. This involves the study of nonlinear

pulse evolution, which is a rich subject in its own right. While there are only a

handful of physical mechanisms acting on the pulse, their interplay can lead to

varied and even counter-intuitive results. Despite the substantial research effort in

this field, qualitatively new phenomena are still being discovered.
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Recent research into these nonlinear managing techniques for mode-locking

fiber lasers has allowed for order-of magnitude increases in the pulse performance,

bringing even femtosecond sources to the level of solid-state sources with the ad-

ditional benefits that come with fiber. Furthermore, it appears as if higher per-

formance levels will be possible. The primary goal of this thesis is to summarize

these developments. In the next section basic pulse-propagation in an optical fiber

is reviewed (section 1.1). In section 1.2, the foundations for mode-locking are in-

troduced, including the development of a master mode-locking equation. Various

extensions and reductions of this model are then introduced in order to examine

early mode-locking mechanisms, including soliton (section 1.2.1) and stretched-

pulse (section 1.2.2) mode-locking. Then three new mode-locking concepts will

be introduced before deeper investigations in the body of the thesis. Finally, in

section 1.3, major fiber laser components and key implementations are discussed.

1.1 Pulse propagation in a fiber

The propagation of optical fields in fibers is governed by Maxwell’s equations. The

combination of these equations results in

∇2E − 1

c2

∂2E

∂t2
= µ0

∂2PL

∂t2
+ µ0

∂2PNL

∂t2
, (1.1)

where we include only the third-order nonlinear effects governed by χ(3), the

induced polarization consists of the sum of PL and PNL, and PNL is treated as

a small perturbation to PL. Given that PNL ≈ ε0
3
4
χ

(3)
xxxx|E|2E and following a

detailed derivation [11–13], one can define the slowly varying amplitude, A(z, t),

as E(r, t) = 1
2
x̂(F (x, y)A(z, t)exp[i(β0z − ω0t)] + complexcongjugate) and write
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the resultant temporal equation for the pulse duration in a single-mode fiber as:

∂A

∂z
+

α

2
A +

iβ2

2

∂2A

∂t2
− β3

6

∂3A

∂t3

= iγ

(
1 +

i

ω0

∂

∂t

)(
A(z, t)

∫ ∞

−∞
R(t′)|A(z, t− t′)|2dt′

)
,

(1.2)

where t is the time in the frame of the pulse, α is the linear loss, β2 refers to the

group-velocity dispersion, β3 refers to the third order dispersion (TOD), γ = n2ω0

cAeff

is the nonlinear parameter, and R(t) is the nonlinear response function. The

nonlinear terms on the right hand side are responsible for self-phase modulation,

the self-frequency shift induced by intra-pulse Raman scattering, self-steepening

and shock formation. For relatively long pulses (> 100fs) the third-order dispersion

and higher order nonlinearities can be neglected (i.e. the nonlinear response can

be considered instantaneous and ω0 times the pulse duration is much greater than

1). This is the case for most of the results presented in this thesis. In addition,

because optical attenuation in fiber is on the order of 0.1 dB/km, α ≈ 0. The

final simplified equation to be used for modeling pulse propagation in a fiber is

therefore given by the nonlinear Schrödinger equation (NLSE):

∂A

∂z
= −iβ2

2

∂2A

∂t2
+ iγ|A|2A. (1.3)

1.2 Mode-locking of lasers

Mode-locking refers to the locking of the phases of the longitudinal cavity modes of

an optical resonator. This can be achieved in two general ways: active and passive

mode-locking. Active mode-locking involves the periodic modulation of the res-
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onator losses to create a pulsed output with the same period. This can be achieved,

for example, with an acousto- or electro-optic modulator. Output pulse durations

from active mode-locked lasers are limited by the speed of the modulator and tend

to produce longer pulses than passive mode-locking. Passive mode-locking, as the

name suggests, uses the intensity of the pulse itself to modulate the loss of the

cavity through interaction with a saturable absorber. Available in many forms,

a saturable absorber is an optical element which, in general, transmits higher in-

tensity light (low loss in the presence of the pulse) and blocks low intensity light

(high loss in the absence of the pulse). An excellent review of basic mode-locking

techniques authored by a major contributor to the field can be found in Ref. [14].

Passive mode-locking is the subject of this thesis owing to its superior performance

and its use of simple optical elements.

In passively mode-locked fiber lasers, in addition to the saturable absorber, the

bandwidth-limited gain of the lasing medium, loss around the cavity, additional

spectral filtering, group-velocity dispersion and self-phase modulation all play a

role in the shaping of a pulse around the cavity. More importantly, for stable

mode-locking, all of these effects must exactly balance one another after one round

trip of the oscillator. In other words, for a stable (steady-state) pulse to exist in

the oscillator, its complex amplitude must end a round trip with the same profile

as it began it with. In the language on nonlinear dynamics, a mode-locked pulse

is an attracting nonlinear limit cycle solution to the equation which governs the

cavity. It is this language that underlies the approaches used in this thesis to

develop new mode-locking mechanisms. In other words, various cavity models are

studied with particular attention paid to bright pulse solutions which may have

useful properties in a fiber laser.
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Before discussing individual models for mode-locking, it is useful to examine

the most basic equation which results from combining all of the relevant physical

mechanisms discussed in the previous paragraph. To do this, assume the gain per

pass is small, so it can be considered a Gaussian spectral filter and a linear gain,

lump the loss and gain into a single parameter, g(z), lump all of the spectral filter-

ing into a term corresponding to a Gaussian spectral filter multiplied by 1/Ω(z),

and assume the saturable absorber can be expanded in a Taylor series about zero

intensity and keep only the first order term multiplied by α(z):

∂A(t, z)

∂z
= g(z)A(t, z)+

(
1

Ω(z)
− iβ2(z)

2

)
∂2A(t, z)

∂t2
+(α(z)+iγ(z))|A(t, z)|2A(t, z).

(1.4)

This equation is known as the Ginzburg-Landau equation with varying coeffi-

cients. While this model assumes that the spectral filtering is strictly of a Gaussian

profile and that the saturable absorber can be modeled only with the lowest order

nonlinear term, its use is justified because it describes all of the relevant funda-

mental mechanisms to their lowest order. This is a useful equation because any

A(t, z) that satisfies A(t, Lc) = A(t, 0)eiφ (Lc is the cavity length and φ is an ar-

bitrary phase) and is stable against perturbations is a mode-locked solution. In

fact, to first order, to date, all known mode-locked lasers can be modeled with this

equation. Unfortunately, however, this partial differential equation with varying

coefficients is analytically intractable and can only be solved with time consuming

numerical simulations. As a consequence, to obtain useful and general information

about a mode-locked laser, simplifications must be made to this equation. In this

vein, to obtain a broad understanding of mode-locked solutions the best simplifi-

cation to make is that, aside from a linear phase, the electric field does not vary
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as a function of z. Put in another way, this model assumes small changes of the

pulse after one period of the equation. This equation can be written as

0 = (g − iφ)A(t) +

(
1

Ω
− iβ2

2

)
∂2A(t)

∂t2
+ (α + iγ)|A(t)|2A(t). (1.5)

This equation is known commonly as the “master-equation” and was developed

by a group at MIT in the early 1990s [15]. This equation has a general exact

solution, which is given by:

A(t, z) =
√

ASech(
t

τ
)eiβ ln Sech( t

τ
)+iθz. (1.6)

While the solution is unstable, its utility is great because it allows for the

explicit representation of qualitative features of the pulse as a function of the most

important system parameters. Its use is justified because there are several known

mechanisms to stabilize the solution, such as gain saturation and higher order

saturable absorber terms. The most important system parameter, which can be

seen from immediate inspection of this solution is the group-velocity dispersion

(GVD). With anomalous GVD the pulses are close to the transform limit (small

temporal phase, β) and at normal dispersion the pulses are highly chirped (large

temporal phase, β). Also in terms of performance, from this analysis, one can see

that the shortest pulses (or more accurately the largest bandwidths) are found near

zero net GVD. As a final observation, this analysis shows us that larger energy

solutions exist when the absolute value of the GVD is larger. In the next few

sections of the introduction, specific reductions and expansions of this master-

equation will be analyzed with the goal of boiling down each regime to its simplest

underlying features.
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1.2.1 Soliton mode-locking

When the net GVD of the laser cavity is anomalous, the master-equation is super-

fluous because a reduced version of this equation has stable bight-pulse solutions.

The reduced equation is the same as the basic equation for a fiber and is written

again here:

∂A(t, z)

∂z
= −iβ2

2

∂2A(t, z)

∂t2
+ iγ|A(t, z)|2A(t, z). (1.7)

This is the well-studied NLSE. The equation is integrable and can be solved

exactly with the inverse scattering technique. Its solutions are given by a reduced

version of Eq. 1.6:

A(t, z) =
√

ASech(
t

τ
)eiθz. (1.8)

In this case the relation of the pulse parameters to the system parameters can

be expressed simply in a single expression with what is called an area theorem

(so-named because of its relation to the pulse’s energy or ‘area’):

Eτ =
2|β2|

γ
, (1.9)

where E is the energy of the pulse and is given by the integration of the in-

tensity profile over all time. From this simple expression one can see why this

reduction from the master-equation is justified: like the anomalous GVD solutions

to the master-equation, these solutions have no chirp (no temporal phase), and

for constant system parameters, larger energies exist at larger GVD and shorter
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pulses exist at smaller GVD. From these observations, one can conclude that the

spectral filter, gain and saturable absorber contribute little to the mode-locking

of pulses at anomalous GVD and pulse solutions can be accurately modeled using

the simpler NLSE.

Indeed this has been the case and simple short-pulse fiber source can be de-

signed at net-anomalous GVD [16–19]. While this mode-locking mechanism is

simple and robust, its performance is limited by the onset of multiple-pulsing at

pulse energies around 100pJ. The limitation arises from the tendency of solitons

to fission in the presence of perturbations, or from peak power clamping in an

effective saturable absorber [20].

1.2.2 Stretched-pulse mode-locking

An effective way to increase the allowed energy is to construct lasers with segments

of normal and anomalous GVD [21, 22]. The variation of dispersion with position

in the laser cavity is referred to as a dispersion map. The breathing evolution of

the so-called dispersion-managed soliton, reduces nonlinear phase accumulation,

and allows the stable pulse energy to increase by an order of magnitude.

The underlying pulse shaping mechanism is still dominated by the NLSE, or

in other words by a direct balance between an effective anomalous GVD and a

self-focusing nonlinearity. However, the pulse evolution in one round trip is such

that the pulse can have more energy with the accumulation of the same amount

of nonlinear phase. This pulse evolution can be modeled successfully with both

the NLSE with varying coefficients [23] and the full master-equation with varying

coefficients [24]. Qualitatively the soliton area theorem is still useful for such pulses
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(Eq. 1.9).

1.2.3 Dissipative soliton mode-locking

When the GVD is normal, no solutions to the NLSE exist and one must extend

the model at least to the master-equation, where this model predicts high en-

ergy, chirped pulses. However, as will be investigated in detail in chapter 2, the

master-equation often fails to model pulse parameters even qualitatively in the

normal dispersion regime and so the master-equation must be extended to a more

complete model which includes a higher order nonlinear parameter (the cubic-

quintic Ginzburg Landau equation (CQGLE)). This lack of stable solutions from

the master-equation underlies the need for a more complete model. Mode-locked

pulse solutions in the normal dispersion regime allow for another order of magni-

tude increase in performance.

1.2.4 Passive similariton mode-locking

Although no soliton solutions exist to the NLSE at normal GVD, another type

of solution, a self-similar solution exists. Self-similarity refers to a pulse which

is form invariant upon propagation. For the NLSE the form-invariant solution is

parabolic [25]:

A2(t, 0) = A2
0

(
1− (

t

τ
)2

)
. (1.10)

The self-similar propagation of a parabolic pulse in normal dispersion fiber can
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be understood intuitively. A parabolic pulse with a parabolic phase profile in the

time domain has a parabolic spectrum with a parabolic phase profile in the spectral

domain. Group velocity dispersion has the effect of adding a parabolic phase in

the spectral domain and self-phase modulation has the effect of adding a parabolic

phase in the temporal domain (because the temporal intensity is also parabolic).

Therefore, neither effects can change the shape of the pulse or spectrum; the pulse

remains parabolic.

While Eq. 1.10 is a solution to the NLSE, it is not a nonlinear attractor. This

means that an arbitrary pulse shape will not necessarily evolve into this parabolic

pulse shape. This self-similar pulse (or “similariton”) only stays parabolic if it

starts parabolic. Therefore, this solution alone can not be used to stabilize and

form a mode-locked laser. However, as we investigate in detail in chapter 3, it

can be an integral part of the evolution in a mode-locked fiber laser with normal

GVD fiber [26], which as will be demonstrated, can have its mode-locked stability

attributed primarily to dissipative soliton mechanisms.

1.2.5 Amplifier similariton mode-locking

The last of the known major bright pulse solutions to NLSE based equations is

also a self-similarly evolving parabola [27]. This solution exists for the case of the

NLSE with the addition of linear gain:

∂A(t, z)

∂z
=

g

2
A(t, z)− iβ2

2

∂2A(t, z)

∂t2
+ iγ|A(t, z)|2A(t, z). (1.11)

This is the simplest model for a gain fiber in a fiber laser which is why its
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self-similar solutions are called amplifier similaritons. The self similar solution can

be written exactly:

A(z, t) = A0(z)
√

1− (t/t0(z))2ei(a(z)−bt2), (1.12)

for t ≤ t0(z). The most important feature of amplifier similaritons is that

they are a strong nonlinear attractor. This means that given a close enough ini-

tial condition, any pulse form, when seeded into an amplifier must evolve (or be

‘attracted’) to the self-similar parabolic solution. It follows that the amplifier sim-

ilariton concept might be useful for mode-locking a laser. That is, if the pulse

is always the same parabola at the end of the gain fiber, then the pulse evolves

self-consistently around the laser and a mode-locked pulse results. In this case

we can no longer assume small changes of the pulse per pass, and the sum of all

physical mechanisms in the oscillator is not directly important, but rather only the

specific details of the gain fiber which stabilizes the solution. As a consequence,

‘averaged-cavity’ models like the NLSE, the master-equation, or the CQGLE will

not be relevant and a new system of understanding based on local nonlinear attrac-

tion in a specific part of the cavity must be developed. Initial developments in this

field are presented in chapter 4. Because the sum of all effects is not important,

this laser can be built at any net value of GVD, which allows for a large range of

tunability for applications. This dispersion-mapped amplifier similariton regime

is discussed in section 4.2. Finally, the local attraction mechanism of amplifier

similariton mode-locking allows for exotic pulse evolution in the rest of the cavity

which can be exploited for its useful features. This phenomena used for ultra-short

pulse durations is discussed in section 4.3.
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1.3 Fiber laser components and useful implementations

To design high performance mode-locked fiber lasers, it is important to understand

the major mode-locking mechanisms. Of course, to implement this knowledge one

must also carefully consider the individual components to be used in the system.

Along with the physical mechanisms in a fiber (section 1.1), the saturable absorber

and the spectral filter are both crucial to high performance fiber laser mode-locking.

1.3.1 Saturable absorbers

As discussed in section 1.2, the saturable absorber (SA) is arguably the most

important component for a mode-locked oscillator. The SA works by selectively

passing higher intensity light and blocking lower intensity light. This property

serves both to build up to a pulse from noise and also to help with the pulse shaping

of a mode-locked pulse. To date, there are two long-standing types of saturable

absorbers: Semiconductor saturable absorber mirrors (SESAM) and some variation

of nonlinear polarization evolution (NPE).

The SESAM consists of a Bragg-mirror on a semiconductor wafer with a sat-

urable absorber semiconductor material [28–30]. If the absorber is sufficiently fast,

its reflection can be modeled by:

R = 1− T0/

(
1 +

|A(t)|2
Psat

)
, (1.13)

where T0 is the unsaturated loss and Psat is the saturation energy. SESAMs

allow for stable and consistent mode-locking but are susceptible to damage at high
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powers or with extended use.

NPE, the absorber of choice for the research in this thesis, is an ultra-fast

passive absorber which relies on the nonlinearity in the fiber for operation. It is

highly tunable and exhibits the highest performance for mode-locking but comes at

the cost of a difficult theoretical analysis and a strong sensitivity to environmental

perturbations.

QWP QWP HWP

χ(3) fiber

Polarizer

α1 α2 α3

Figure 1.1: Basic schematic for the complete operation of NPE. HWP: half-
waveplate and QWP: quarter-waveplate.

With a linear polarization basis, the coupled-mode equations for an arbitrary

beat length, LB, neglecting group-velocity dispersion, loss, and higher order terms

is [11]

∂u

∂z
= iγ(|u|2 +

2

3
|v|2)u +

iγ

3
u∗v2e

−4πiz
LB

∂v

∂z
= iγ(|v|2 +

2

3
|u|2)v +

iγ

3
v∗u2e

4πiz
LB . (1.14)

Adapting a Jones matrix formalism, the waveplates can be represented as

HWP [φ] =




cos(2φ) sin(2φ)

sin(2φ) − cos(2φ)




and

QWP [φ] =
1− i

2




i + cos(2φ) sin(2φ)

sin(2φ) i− cos(2φ)


 .

(1.15)
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Eq. 1.14 has a simple solution if LB = 0 or LB = ∞. Because the beat

length in typical fibers is ∼ 20 m, and typical cavity lengths are about an order of

magnitude shorter, LB = ∞ is more appropriate. In this case, Eq. 1.14 becomes

∂u

∂z
= iγ(|u|2 +

2

3
|v|2)u +

iγ

3
u∗v2

∂v

∂z
= iγ(|v|2 +

2

3
|u|2)v +

iγ

3
v∗u2, (1.16)

with a solution that gives the Kerr matrix [31]

Kerr = eiγ(|u(0)|2+|v(0)|2)Leff




cos(2
3
γIm[u(0)v∗(0)]) sin(2

3
γIm[u(0)v∗(0)])

− sin(2
3
γIm[u(0)v∗(0)]) cos(2

3
γIm[u(0)v∗(0)])


 .

(1.17)

Without loss of generality, the polarizer can be aligned to the x-axis giving:

P =




1 0

0 0


 . (1.18)

Assuming the light is initially polarized along the x-axis, the light is then

operated on by the elements of the oscillator in the order in which they appear in

Figure 1.1:




un+1(t)

0


 = P ·QWP [α2] ·HWP [α3] ·Kerr ·QWP [α1] ·




un(t)

0


 . (1.19)

From here it is straightforward to calculate the effective transmission curve of

the NPE:
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T (I) =
In+1

In

(In) =
|un+1|2
|un|2 (|un|2). (1.20)

After some cumbersome transformations and with α∗3 = 2α3 − α1 − α2,

T (α1, α2, α
∗
3, I)LB=∞ can be represented in its fundamental form as

T (α1, α2, α
∗
3, I)LB=∞ = A + B cos(Iω) + C sin(Iω), (1.21)

where

A =
1

8
(4 sin(2α1) sin(2α2) + 4)

B =
1

2
cos(2α1) cos(2α2) cos(2α∗3)

C = −1

2
cos(2α1) cos(2α2) sin(2α∗3)

ω =
2

3
sin(2α1).

(1.22)

Clearly, the resultant transmission function is both a function of the waveplates

and the input intensity. If the waveplates are biased correctly, the transmission

curve can be biased such that higher intensity has a higher transmission, thus

allowing for a pulse to form from noise. In addition, it is also possible to fine-

tune the mode-locked pulse state by additionally tuning the wave-plates to achieve

maximum performance.

1.3.2 Spectral filters

The use of an additional spectral filter is required for both dissipative soliton and

amplifier similariton mode-locking. In this thesis, we make use of two specific types
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of spectral filters: a birefringence based filter and a dispersive element/waveguide

filter.

Birefringent filter

The birefringent filter is based on the wavelength dependant phase shift that or-

thogonal polarization states of light accumulate upon propagation through a bire-

fringent material. If light which has a wavelength dependant polarization rotation

propagates through a polarizer, it will have a wavelength dependant loss.

The Jones matrix, M(λ, θ, d) for propagation through a birefringent material

with arbitrary angle θ of the optical axis from the angle of the input polarization,

with ne and no the orthogonal refractive indices, λ the wavelength, and d the

thickness of the plate is:

M(λ, θ, d) =




e
2idneπ

λ cos2(θ) + e
2idnoπ

λ sin2(θ)
(
e

2idneπ
λ − e

2idnoπ
λ

)
cos(θ) sin(θ)

(
e

2idneπ
λ − e

2idnoπ
λ

)
cos(θ) sin(θ) e

2idnoπ
λ cos2(θ) + e

2idneπ
λ sin2(θ)


 .

(1.23)

After propagation through a polarizer, the transmission as a function of wave-

length becomes:

T =
∣∣∣e 2idneπ

λ cos2 (θ) + e
2idnoπ

λ sin2 (θ)
∣∣∣
2

. (1.24)

This expresses a sinusoidal spectral filter which has a modulation depth which

varies from 100% as the optical axis is tuned from 45◦. The Gaussian variation

of the modulation depth is depicted in Figure 1.2 for the case of 1-µm wavelength

with a crystal quartz birefringent material.
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Figure 1.2: Variation of the modulation depth of a birefringent filter as a function
of the angle from the optical axis.

In order to determine the bandwidth of the filter, Eq. 1.24 can be simplified if

the optical axis is at 45◦:

T = cos2

(
πd(ne− no)

λ

)
. (1.25)

The full-width at half maximum (FWHM) bandwidth of this filter can be cal-

culated numerically and is shown in Figure 1.3 for the case of 1-µm wavelength

with crystal quartz birefringent material.

It is also important to be able to tune the center wavelength of the filter. To

derive the center wavelength dependence we must take into account the tilt angle of

the plate with respect to normal incidence [32]. While the results are too detailed

to show here, the conclusion is that for angles near Brewster’s angle it is possible to

achieve wavelength tunability of one free spectral range of the filter with minimal

loss of modulation depth with the optical axis tuned to 45◦ from the polarizer.

This is a simple operational procedure that allows for a high modulation depth,

wavelength tunable, smooth sinusoidal spectral filter.
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Figure 1.3: Spectral filter bandwidth as a function of plate thickness for 1-µm
wavelength with a crystal quartz birefringent material. FWHM: Full-width at
half-maximum.

Dispersive element/waveguide filter

While birefringent filters are very nice for their low loss, for narrow filtering, the

multiple pass-bands present with sinusoidal filtering can pass unneeded light which

can be deleterious for mode-locking. In addition, the exact spectral profile of the

filter can be important. For example, for dissipative solitons, the simplest spectral

filter model which accounts for all of the key experimental features is a Gaussian,

and in fact numerical simulations consistently show better performance with a

Gaussian filter. In addition, the smoothness of the filter is important empirically;

this underlies the poor performance of off-Gaussian interference filters, for example

[33]. These reasons motivate the development of a single-peaked smooth Gaussian

filter.

One technique to create a Gaussian filter involves the combination of a disper-

sive element and a lens and fiber combination (a collimator) as shown in Figure

1.4. The overlap of the wavelength dependant spatial beam with the Gaussian
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Figure 1.4: Schematic of a dispersive element waveguide filter.

mode of the single-mode fiber results in a spectral filter with a profile of the same

form. The bandwidth of the spectral filter is related to the wavelength dependant

spreading angle of the dispersive element and the center wavelength can be tuned

by offsetting the angle into the collimator. The experimental filter profile is well

fit by a Gaussian (Figure 1.5(a)). The bandwidth for several common dispersive

elements operating at 1-µm wavelength is shown in Figure 1.5.

The benefits of a smooth Guassian filter with one peak and narrow bandwidths

comes at the cost of the loss that comes from the reflection from a grating. However,

this loss is typically ∼ 30%, which is tolerable for high gain fiber laser systems.
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600 lines/mm grating

300 lines/mm grating 2 SF11 prisms

Figure 1.5: (a) Example filter profile; filter bandwidth vs. separation distance for
(b) a 600 lines/mm grating, (c) a 300 lines/mm grating and (d) 2 SF11 prisms
operating at 1030-nm wavelength.

1.4 Organization of thesis

In chapter 2, the now firmly established dissipative soliton mode-locking regime

is analyzed beginning with a comprehensive theoretical framework and moving

on to a broad survey of experimental results. The limits to the experimental

results are investigated including the development of separate recipes for shorter

pulses and higher energies. Then practical extensions are briefly covered, including

fiber core-size enhancement techniques as well as methods for creating ultra-robust

environmental versions. Finally, the last section details a particular extension

of dissipative soliton mode-locking which allows for significant simplification of
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chirped-pulse amplification systems.

In chapter 3, the core mechanism for dissipative soliton mode-locking is ex-

amined and used to explain two lesser understood mode-locked regimes: passive

self-similar mode-locking and stretched dissipative soliton mode-locking. A com-

prehensive numerical analysis allows for some understanding of the passive simi-

lariton in the context of averaged cavity models and stretched dissipative soliton

mode-locking is examined theoretically for the first time. The importance of dissi-

pative mechanisms are emphasized and amplifier similariton mode-locking is briefly

introduced allowing for a direct comparison of all known mode-locking mechanisms

based at normal group-velocity dispersion.

In chapter 4, amplifier similariton mode-locking is investigated for the first time

and analyzed as a local nonlinear attraction to the gain section of the oscillator.

Experimental results are presented with the goal of both illustrating the concept

and for high performance mode-locking. As shown in this chapter, amplifier simi-

lariton mode-locking allows for the shortest pulses from a normal dispersion fiber

laser. In section 4.2, Amplifier similariton mode-locking is extended by the use of

a grating pair for dispersion management. Because mode-locking with this local

nonlinear attractor is insensitive to the total cavity GVD, the mode-locked pulses

are identical over a wide range of GVD values, from normal through zero to anoma-

lous. This property allows significant tunability for specific performance targets.

For example, this technique allows for the highest performance net anomalous dis-

persion mode-locking as well as the highest performance transform-limited output

operation. In section 4.3, amplifier similariton mode-locking is exploited to add

a section of fiber into the cavity which allows for significant bandwidth growth.

This novel technique allows for the generation of the shortest pulses to date from
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a fiber laser and is the clearest illustration of the benefits of amplifier similariton

mode-locking.

Finally, in chapter 5, several notable future directions in fiber laser research are

identified briefly. In addition, a new mode-locking mechanism which involves the

use of dispersion-decreasing fiber is investigated for the possibility of the generation

of ever-higher performance mode-locked fiber lasers.
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CHAPTER 2

DISSIPATIVE SOLITON FIBER LASERS1

2.1 Introduction

Advances in pulse-propagation physics in the past few years [2–4] have enabled

order-of-magnitude increases in the pulse energy and peak power from femtosecond

fiber lasers. As a result, it is now realistic to design oscillators based on ordinary

single-mode fiber (SMF) that can compete with the performance of solid-state

lasers.

In general, a femtosecond laser has segments or components with both normal

and anomalous GVD. The net or average GVD can be normal or anomalous. When

the net GVD is anomalous, the pulse-shaping is soliton-like as the nonlinearity bal-

ances the GVD in an average sense. This is the case in standard Ti:sapphire lasers,

e.g., although the breathing is weak because the cavity contains much less than

one dispersion length of material for all but the shortest pulses. Since the demon-

stration in 1984 that prism pairs can provide adjustable anomalous GVD with

low loss [5], virtually all femtosecond lasers have included anomalous-dispersion

segments or components.

The stable pulse energy increases as the dispersion of the laser cavity varies from

large and anomalous to zero, and then to large and normal. This trend could be

extended by removing the anomalous-dispersion segment from the laser. However,

solitons are obviously then impossible. Thus, it is not clear how to generate stable,

high-quality pulses. As mentioned above, it has become conventional wisdom

1The majority of this chapter is published in pages 97-130 of Ref. [1].
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that a femtosecond-pulse laser requires intracavity dispersion control or anomalous

dispersion.

Since 2006, our group has demonstrated theoretically and experimentally that a

new kind of soliton can in fact form in a fiber laser with only normal-dispersion com-

ponents2. The dominant pulse-shaping mechanism is filtering of a highly-chirped

pulse in the cavity. The chirped pulses can be stable with very high energies, and

can be compressed to the transform limit outside the laser. Numerical and analyt-

ical theories show that the pulses balance amplitude and phase modulations, i.e.,

dissipation is central to their existence. These so-called dissipative solitons repre-

sent a new class of laser pulses with remarkable scientific properties, potential for

extremely high energy and peak power, and substantial practical benefits.

2.2 Theory: analytic approach

In this section, we determine a suitable analytic model for a general understanding

of normal-dispersion pulse-shaping and mode-locking [4].

2.2.1 Theory

In general, the physical mechanisms that affect the pulse in a fiber laser are not

uniformly distributed around the oscillator. However, to make initial analytic

progress, we look to model the “average” behavior of a real cavity with a pulse

propagation equation with constant coefficients [4, 6] (see Ref. [7] for a theoret-

ical extension to variable coefficients). Femtosecond pulse propagation in a dis-

2Such a laser is sometimes referred to as an all-normal-dispersion (ANDi) laser.
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persive, electronic Kerr medium can be modeled with the nonlinear Schrodinger

equation. Fiber lasers also feature linear gain, some spectral filtering, and an

intensity-dependent amplitude modulation, to promote the pulse from noise.

A well-know equation that models this behavior is the cubic-Ginzburg Landau

equation (CGLE),which is referred to as the master-equation when used to model

laser cavities [6]. The chirped hyperbolic-secant solution of the CGLE has found

wide use in the modeling of mode-locked lasers. However, the known solutions

of the CGLE fail to account for even qualitative aspects of fiber lasers with large

normal GVD, such as the observed spectral shapes, the pulse chirp, stability and a

multiplicity of solutions with identical energy. Therefore, we examine the next well-

studied equation which can be used to model pulse propagation in the oscillator,

the cubic-quintic Ginzburg-Landau equation (CQGLE):

∂U(z, t)

∂z
= gU(z, t)+(

1

Ω
−i

D

2
)
∂2U(z, t)

∂t2
+(α+iγ)|U(z, t)|2U(z, t)+δ|U(z, t)|4U(z, t),

(2.1)

where U is the electric field envelope, t is the time from the center of the pulse,

z is the propagation coordinate, g is the linear gain, Ω is related to the filter

bandwidth, D is the GVD, γ is electronic Kerr nonlinear coefficient, and α and δ

are the cubic and quintic saturable absorber terms. Several groups have employed

the CQGLE to model fiber lasers with nonlinear polarization evolution [8–11],

primarily through numerical solutions. In particular, Akhmediev and co-workers

have done much in this area. They recently investigated stable solutions to the

CQGLE and determined that along certain lines of parameter space, the pulse

energy increases without bound [12,13]. Komarov et al. showed theoretically that

careful filtering can control harmonic mode-locking under some conditions [14].
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While the general solution to Eq. 2.1 is not known, a well-known particular

solution [15,16] exists,

U(t, z) =

√
A

cosh ( t
τ
) + B

e−i β
2

ln (cosh ( t
τ
)+B)+iθz. (2.2)

A, B, τ , β, and θ are real constants. Because it is only a particular solution, Eq.

2.2 satisfies Eq. 2.1 with an additional constraint on one of the system parameters,

α, whereas a larger range of α values give rise to stable solutions in the general

solution. Two sets of solutions exist to the six algebraic equations which result

from inserting Eq. 2.2 into Eq. 2.1 and separately satisfying the real and imaginary

parts. However, one set requires g > 0, which we ignore as they will be unstable

against the growth of the continuous-wave background.

The energy of the pulse is calculated as the integral over time of the intensity

profile and it is reasonable to assume that we have direct experimental control of

the pulse energy via the pump. Since varying B changes the pulse energy, we treat

B as a system parameter (controlled by the pump) and solve instead for g, which

is assumed to be set by the requirements for lasing. The resulting expressions are:
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α =
γ (3∆ + 4)

DΩ

A = −2 (B2 − 1) γ (∆ + 2)

BDδΩ

τ 2 = −B2δ (D2 (∆− 8) Ω2 + 12 (∆− 4))

24 (B2 − 1) γ2Ω (D2Ω2 + 4)

β =
∆− 4

DΩ

g = −
6 (B2 − 1) γ2 (D2Ω2 + 4)

(
−8(∆−4)

D2Ω2 −∆ + 6
)

B2δ (D2 (∆− 8) Ω2 + 12 (∆− 4))

θ = −2(B2 − 1)γ2 (∆ + 2)

B2DδΩ

∆ =
√

3D2Ω2 + 16.

(2.3)

First we note that, if the other system parameters are constant, both pulse du-

ration and energy increase as a function of net GVD (Figure 2.1(a)). In addition,

the minimum pulse duration occurs at zero GVD. These are important results be-

cause they align with the dominant results of the master-equation theory, which

is known to be an accurate qualitative predictor for laser cavities [6]. Thus, these

trends have also been verified experimentally. Now, with the introduction of the

quintic nonlinear absorption coefficient, δ, we find new behavior. The pulse param-

eter B is particularly important for examining this new behavior as it differentiates

the pulse from the master-equation solution. For δ > 0, increasing the energy pro-

duces steep-sided spectra with a dip in the middle (Figure 2.2(a)). For δ < 0,

increasing the energy produces narrower spectra and longer, flatter pulses in the

time domain (Figure 2.2(b)). These have previously been identified as “flat-top

solutions” [17]. As the energy approaches a maximum at B=-1 (Figure 2.1(b)) (at

which point the solution diverges), the spectra exhibit deep fringes (Figure 2.2(a)).

In agreement with experiments, pulses in the normal GVD regime are highly-

chirped. The bottom row of Figure 2.2 shows the autocorrelations that result from
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impressing a quadratic spectral phase on the pulses to minimize the duration, as is

done in the laboratory. With increasing B, the linear component of the pulse chirp

increases (Figure 2.1(d)). The pulse with B=35 is long enough to measure directly,

and we show the theoretical intensity profile instead of the autocorrelation.
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Figure 2.1: (a) Pulse duration and energy plotted vs. GVD parameter D. (b)
Energy, (c) pulse duration, and (d) chirp (normalized to that of the pulse with B=-
0.9) plotted vs. B. Dotted lines separate the two classes of solutions. Italicized
numbers correspond to solutions shown in Figure 2.2. Notice the break in the
x-axes in (b) and (c). Figure taken from Ref. [4].

For experimental observation, a model must produce sufficiently stable solu-

tions. A thorough numerical study of the existence and stability of pulse solutions

to the CQGLE has been performed for δ < 0 [16]. While numerical solutions are

stable for a large region of parameter space, Eq. 2.2 is stable for only one point

(corresponding to a pulse as in Figure 2.2(b)). The analytic solution is unstable

against collapse for δ > 0, and as a result it has been left unexplored. Remarkably,
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Figure 2.2: Pulse solutions categorized by the value of B. Top row: temporal
profiles. Middle row: representative spectral shapes for the indicated values of B.
Bottom row: corresponding autocorrelations of the respective dechirped analytical
solutions. The intensity profile is shown for B=35. Figure taken from Ref. [4].

solutions represented by both δ > 0 and δ < 0 are stable in the normal dispersion

laser. Plausible mechanisms for this stability include (1) gain saturation, which

is known to stabilize pulses and is lacking from the model and (2) the possibility

that the experimental saturable absorption may well be modeled by terms above

the quintic, which could be negative and function as stabilizing coefficients.

2.2.2 Experimental results

We will first use a specific example to introduce the main features of normal-

dispersion lasers. A simple and robust manifestation of a dissipative soliton laser
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(shown schematically in Figure 2.3) is similar to previous Yb-doped lasers (e.g. see

Ref. [18]) but without the grating pair that provides anomalous GVD. The fiber

section consists of 3 m of SMF preceding 60 cm of highly-doped Yb gain fiber,

which is followed by another 1 m of SMF. The total cavity dispersion is ∼ 0.1 ps2.

Nonlinear polarization evolution (NPE) is employed as the saturable absorber,

and is implemented with quarter-wave plates, a half-wave plate, and a polarizing

beam-splitter. A birefringent filter centered at 1030 nm, with 12-nm bandwidth,

is placed after the beam splitter. The output of the laser is taken directly from

this beam-splitter for maximum efficiency.

    output

Yb-doped

fiber

PBSisolator

WDM

HWP

birefringent

plate QWPQWP

980nm

pump

SMF SMF

Figure 2.3: Schematic of the experimental setup; PBS: polarization beam split-
ter; HWP: half-wave plate; QWP: quarter-wave plate; WDM: wavelength division
multiplexer.

Self-starting mode-locked operation is achieved by adjustment of the wave

plates. Stable single-pulsing is verified with a fast detector with 30-ps resolu-

tion, and by monitoring the interferometric autocorrelation out to delays of ∼100

ps. Also, the spectrum is carefully monitored for any modulation that would be

consistent with multiple pulses in the cavity.
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Typical results for the output of the laser are shown in Figure 2.4. The spectrum

(Figure 2.4(a)) is consistent with significant SPM within the cavity. The laser

generates ∼1-ps chirped pulses, which are dechirped to 195 fs (Figure 2.4(b)) with

a pair of diffraction gratings outside the laser. The dechirped pulse duration is

within 15% of the Fourier-transform limit. The interferometric autocorrelation

shows noticeable side-lobes, which arise from the steep sides and structure of the

spectrum. Nevertheless, these amount to only ∼ 10% of the pulse energy. The

output pulse energy is 2.5 nJ, and after dechirping with lossy gratings the pulse

energy is 1 nJ. The laser is stable and self-starting.

(a) (b)

Figure 2.4: (a) Output spectrum and (b) autocorrelation of the dechirped pulse.

The behavior of the laser depends critically on the spectral filter: without it,

stable pulse trains are not generated. In some cavities, mode-locking is possible

without a filter, but the pulse duration tends to be long (>500 fs) [19, 20]. Im-

portant pulse parameters such as bandwidth, pulse duration, chirp, spectral shape

and energy can vary over a large range with the variation of the wave plates, pump

power, fiber lengths, and filter characteristic. We experimentally access different

operating states of the laser via adjustments to the wave plates, the pump power,

and the cavity length. These adjustments effectively vary the cubic and quintic

saturable absorber terms, the pulse energy, and the GVD, respectively.
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Figure 2.5: Top row: representative experimental spectra corresponding to the
theoretical pulses of Figure 2.2. Bottom row: autocorrelation data for the corre-
sponding dechirped pulses. The rightmost pulse is the respective output intensity
profile. Figure taken from Ref. [4].

A representative survey of mode-locked outputs is shown in Figure 2.5. The

experimental spectra have the same features of the predicted spectra (Figure 2.2),

which is remarkable considering the complicated profiles, none of which had been

observed previously from mode-locked lasers. However, the spectra in Figure 2.2

are plotted with β = 10, a factor of 7 from the theoretical value, which is typical of

the quantitative agreement with the CQGLE. The range in which the solution lies

is determined by the saturable absorber, which is controlled by the wave plates.

The dechirped autocorrelations (bottom row of Figure 2.5) agree with the calcu-

lated versions (bottom row of Figure 2.2). The experimental chirp values increase

monotonically (from 0.084 ps2 to >10 ps2) from left to right, as predicted (Figure

2.1(d)). Finally, the measured energies of the pulses shown in Figure 2.5 also follow

the theoretical trend of Figure 2.1(b) with 4, 3, 2, and 8 nJ from left to right.

Accurate modeling of the normal-dispersion fiber laser by the analytic solution

of the CQGLE confirms the dominant role of dissipative processes in the pulse

shaping. From this point of view, it is appropriate to refer to lasers with this pulse
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evolution (weakly-breathing and highly-chirped pulses) as dissipative-soliton fiber

lasers. “Dissipative” refers to the fact that the system is not conservative, and

not to dissipation or decay of the pulse itself. Energy flows through a dissipative

soliton. In addition, thanks to the agreement with the analytical solutions of the

CQGLE, the dissipative soliton laser constitutes a practical, robust and dynamic

test-bed for studying stable solutions to the GLE and to its variants. Dissipative

solitons theoretically exist in a diverse range of settings [21, 22], but experimen-

tal observations that highlight the distinctions from other solitons are still rare,

particularly in optical physics [23–25]. Normal-dispersion fiber lasers provide a

convenient and powerful setting for the study of this class of solitary wave.

2.3 Theory: simulations

While the analytic analysis of section 2.2. is useful for large-scale understanding

and design, numerical simulations are used to refine and further understand the

dissipative soliton laser [26]. In particular, with simulations we can investigate the

evolution of the pulses within one round trip of the oscillator (section 2.3.1) and

add quantitative information to the variation of important parameters (section

2.3.2). Relevant results are confirmed experimentally (section 2.3.3).

2.3.1 Temporal evolution

To investigate the temporal evolution of the pulses inside the cavity, we simulate

the cavity of the example in section 2.2.2. The pulse propagation within a general

fiber is modeled by a reduced version of Eq. 2.1:

37



∂U(z, t)

∂z
= g(Epulse)U(z, t)− i

D

2

∂2U(z, t)

∂t2
+ iγ|U(z, t)|2U(z, t). (2.4)

D = 230 fs2/cm and γ = 0.0047 (Wm)−1 and in the Yb-doped gain fiber

there is an additional saturating gain, g(Epulse) = g0/(1 + Epulse/Esat), where g0

corresponds to 30 dB of small-signal gain, Epulse =
∫ TR/2

−TR/2
|U(z, t)|2dt, where TR is

the cavity round trip time and Esat is the gain saturation energy (varied from 0.25

nJ to 6 nJ). A Lorentzian gain shape with 100-nm bandwidth is assumed. The fiber

is followed by a saturable absorber modeled by a monotonically-increasing transfer

function, T = 1 − l0/(1 + P0/Psat) where l0 = 0.7 is the unsaturated loss, P0 is

the instantaneous pulse power and Psat is the saturation power. Mode-locking is

rarely affected by a change in Psat and as a consequence, the effects of the saturable

absorber are not a focus of this work. To this end, Psat is adjusted (from 0.1 to

2.4 kW) so that the relative transmission of the peak to the wings of the pulse is

the same regardless of the energy. A Gaussian spectral filter is placed after the

saturable absorber, and the filter bandwidth is varied from 8 nm to 25 nm. A

∼ 70% output coupler is located between the saturable absorber and the spectral

filter. The governing equations are solved with a standard symmetric split-step

propagation algorithm and are run until the energy converges to a constant value.

The typical spectral and temporal evolution of a dissipative soliton are depicted

in Figure 2.6. All of the spectra exhibit the steep edges predicted by the analyt-

ical treatment from section 2.2. After traversing the spectral filter, the spectrum

acquires a Gaussian-shaped top that follows the filter transmission curve. Small

spectral broadening is observed in the first SMF and the gain fiber. Nonlinear

phase is accumulated after the pulse has been amplified in the gain fiber, and this

produces sharp peaks at the edges of the spectrum. The spectral filter, and to a
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Figure 2.6: Temporal and spectral evolution of a typical numerically simulated
dissipative soliton fiber laser; SA: saturable absorber, SF: spectral filter.

lesser degree the saturable absorber, cut off the peaks and return the spectrum to

its original shape.

The pulse duration increases monotonically in the fiber sections and after a

slight and predictable decrease from the saturable absorber, the spectral filter

restores the pulse to its original duration. The analytic theory, numerical simula-

tions, and experiments, all show that the pulse is highly chirped in all sections of

the cavity. As a consequence, the spectral filter, rather than increasing the pulse

duration as in the case of a transform-limited pulse, decreases the pulse duration.

The filter dominates the pulse-shaping and underlies the self-consistency of the so-

lutions in the dissipative soliton laser. For further investigation into pulse-shaping

and evolution in normal dispersion fiber lasers, see chapter 3.
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2.3.2 Variation of laser parameters

The three most relevant system parameters for the control of the intra-cavity pulse

evolution and characteristics are the nonlinear phase (ΦNL), the spectral filter

bandwidth, and the GVD. In this section, we describe the effects of each parameter.

Interestingly, the qualitative behavior and performance of the laser vary similarly

regardless of which parameter is varied.

A reference condition is based on the cavity simulated to show the pulse evo-

lution with the following details: 60 cm of gain follows 3 m of SMF and precedes

1 m of SMF, the Gaussian shaped spectral filter has an 8-nm full-width at half-

maximum (FWHM) bandwidth, and the pulse energy is reduced by an additional

10% after the output coupler to account for other losses.

Nonlinear phase shift

The simplest parameter to tune in the laser is the pump power, which controls

the pulse energy, which in turn has a direct effect on the ΦNL accumulated by the

pulse. The performance of the dissipative soliton fiber laser changes extensively as

ΦNL varies. It is worth noting that ΦNL can also be varied by changing the output

coupling or the fiber lengths, and will have the same effects, but that control of the

pump allows for a convenient way to keep the other parameters constant. With a

gradual increase in the pump power, the output spectra display a clear variation

(Figure 2.7).

As ΦNL increases, the spectrum broadens and develops sharp peaks around its

edges (Figure 2.7(b)). With larger ΦNL, the spectrum broadens further and even-

tually develops structure or fringes (Figure 2.7(d)). The output spectral bandwidth
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(a) (b) (d)(c)

Figure 2.7: Output spectrum with ΦNL: (a) ∼ 1π, (b) ∼ 4π, (c) ∼ 7π, (d) ∼ 16π.
Figure taken from Ref. [26].

with ΦNL = 16π is about 6 times larger than that with ΦNL = π. Even with ΦNL

as large as 10π or more, the output pulse can be dechirped to very close to the

transform limit. For example, the pulse with ΦNL = 16π (7π) can be dechirped

with a linear dispersive delay to only ∼ 20% (10%) beyond the transform limit.

The dependence of the laser output parameters on ΦNL is summarized in Fig-

ure 2.8. The pulse energy increases with ΦNL, as expected (Figure 2.8(a)). The

breathing ratio (ratio of maximum and minimum pulse durations in the cavity)

increases from ∼1 to ∼4 as ΦNL increases (Figure 2.8(b)). The spectral amplitude

modulation is larger when the output spectral bandwidth is much larger than the

filter bandwidth (e.g. ∼5 times larger in Figure 2.7(d)) . Since the pulse is highly

chirped, strong spectral amplitude modulation translates to strong modulation in

the time domain, and thereby a large breathing ratio.

The dechirped pulse duration is inversely proportional to the spectral band-

width (Figure 2.8(c) is a graphical representation of the bandwidth increase seen

in Figure 2.7). Finally, the pulse chirp (the magnitude of anomalous GVD re-

quired to dechirp the output pulse to its maximum peak power) decreases as ΦNL

increases (Figure 2.8(d)). This indicates that the accumulation of nonlinear phase

tends to cancel some of the phase accumulated by the normal GVD of the fiber.

A final point is that stable pulses are found for remarkably-large nonlinear
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(a) (b)

(c) (d)

Figure 2.8: Laser performance vs. ΦNL: (a) pulse energy, (b) breathing ratio, (c)
dechirped pulse duration, (d) chirp. Figure taken from Ref. [26].

phase shifts. Values of ΦNL up to 20π are observed in the simulations (Figure 2.8),

and these will translate directly into high pulse energies, to be discussed below.

Spectral filter bandwidth

Reduction of the filter bandwidth from a reference condition corresponding to the

spectrum in Figure 2.7(d), keeping the other parameters constant, produces the

same qualitative trend as increasing ΦNL (compare Figure 2.7 and 2.9).

In fact, the variation of the other parameters as the filter bandwidth decreases

is also qualitatively similar to the case of increasing ΦNL (Figure 2.10). Notice

that the variation of energy is omitted as the energy is held constant to keep ΦNL
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(a) (b) (c) (d)

Figure 2.9: Output spectrum with spectral filter bandwidth: (a) 25 nm, (b) 15
nm, (c) 12 nm, (d) 8 nm. Figure taken from Ref. [26].

constant.

(b)

(a)

(c)

Figure 2.10: Laser performance vs. spectral filter bandwidth: (a) breathing ratio,
(b) dechirped pulse duration, (c) chirp. Figure taken from Ref. [26].

Group-velocity dispersion

GVD is varied by increasing the length of the first segment of SMF, starting from

the reference condition corresponding to the spectrum in Figure 2.7(d). The GVD
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was varied from ∼ 0.1 ps2 to ∼0.5 ps2 , while other parameters are held constant.

Again the resulting trend when GVD decreases is similar to those obtained by

increasing ΦNL or decreasing the filter bandwidth (Figure 2.11).

(a) (d)(c)(b)

Figure 2.11: Output spectrum with GVD: (a) 0.52 ps2, (b) 0.31 ps2, (c) 0.24 ps2,
(d) 0.10 ps2. Figure taken from Ref. [26].

The variation of the other parameters is also qualitatively similar to the case

of increasing ΦNL or decreasing the filter bandwidth (Figure 2.12). The energy is

again omitted because it is a controlled variable.

Summary of the effects of laser parameters

In summary, the output spectral shape evolves gradually from a smooth narrow

spectrum (Figure 2.13A) to a fringed and broadened spectrum (Figure 2.13B) with

decreasing spectral filter bandwidth, decreasing GVD, or increasing ΦNL. More

generally, all simulated spectral fall somewhere between spectra A and B in Figure

2.13. This conclusion is consistent with the results of the analytical investigation.

The variation of spectral shapes can be described by a variation in the value of the

parameter B, which in turn produces variation in other pulse parameters such as

the energy and chirp. In fact, the energy increases and the chirp decreases when

B goes toward -1, just as in the results shown in the simulations.
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(a)

(b) (c)

Figure 2.12: Laser performance vs. GVD: (a) breathing ratio, (b) dechirped pulse
duration, (c) chirp. Figure taken from Ref. [26].

A B

Spectral filter bandwidth

GVD

Nonlinear phase shift

Figure 2.13: Output spectrum vs. laser parameters. Figure taken from Ref. [26].

Design guidelines

As dissipative soliton lasers are practically desirable for applications, it can be

useful to translate these theoretical results into some basic design guidelines:
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1) Determine the desired net GVD

The GVD is determined by the fiber lengths required in design, and hence,

by the repetition rate. It also is directly related to the bandwidth of the output

pulse. The bandwidth increases rapidly with decreasing GVD. The results above

suggest these rough guidelines for a Yb fiber laser emitting near 1000 nm and using

standard HI1060 SMF: with 50 m of total fiber, ∼5-nm bandwidth is expected

(section 2.6); with 4 m of fiber, ∼15-nm bandwidth is expected (section 2.2.2);

and with 2 m of fiber, ∼40-nm bandwidth is expected (section 2.4.3).

2) Determine the spectral filter bandwidth

The filter is a crucial component for both stability and performance of the

dissipative soliton laser. Once the GVD is fixed, one can choose an appropriate

spectral filter. The filter bandwidth should be chosen to align with the bandwidth

set by the GVD. That is, it should be large enough to support high energy, but

narrow enough to ensure around a factor of two filtering for stability and for re-

duction of the chirped pulse duration in the cavity. Again, as rough guidelines: for

50 m of fiber, 10-nm bandwidth is appropriate; for 4 m of fiber, 12-nm bandwidth

is appropriate; and for 2 m of fiber, 15-nm bandwidth is appropriate.

3) Optimize the nonlinear phase shift

Once the GVD and the spectral filter bandwidth are determined, ΦNL is easily

optimized by adjusting the pump power. In our lab, we find that it is best to

begin with a narrow filter to ensure stable mode-locking, and then increase the

filter bandwidth and the pump power to optimize the performance. With a narrow

filter, it will be easiest to achieve mode-locking, but the laser will also be prone

to multi-pulsing at relatively low energy. The filter bandwidth and pump power
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should be increased to obtain the highest stable single-pulse energy.

This brief design guide is intended to gives some initial suggestion of the pa-

rameters to use. More-precise values can easily be determined with numerical

simulations.

2.3.3 Experimental confirmation

Experiments are designed as in section 2.2 (Figure 2.3) and match the simulated

cavity. Two differences from the simulations are i) the spectral filter, which has

a sinusoidal spectral transmission resulting from the insertion of a quartz plate

between two polarizers (see Figure 2.3), and ii) the saturable absorber. The NPE

is generally biased such that higher-intensity light is transmitted back into the

cavity and lower-intensity light is rejected. We further use the NPE output port

as the main output to optimize the efficiency of the cavity. As a consequence,

additional care must be taken to perform controlled experiments, as the output

coupling and the transfer function of the NPE are coupled. However, the output

coupling has its main effect on the energy in the cavity, which can be measured,

and the exact form of the NPE transmission function has little influence on the

output pulse parameters.

Many of the parameters in fiber lasers are strongly interconnected, which makes

controlled experiments a challenge. For example, in order to change the spectral

filter, we must replace the birefringent filter plate for one of a different thickness,

and this requires realigning the cavity, which in turn changes the bias of the NPE,

which then effects the output coupling, which, finally is directly linked to another

main system variable, ΦNL. To change the GVD, for another example, we must
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change the fiber length, which in addition to also changing the NPE, changes

directly the length of fiber which contributes to ΦNL. Controlled experiments

are therefore performed with fixed fiber length and filter. The ΦNL itself can be

directly tuned through control of the pump power and the wave plates, with little

effect on the other parameters, and as such will be the focus of our experimental

confirmation of the trends from the simulations.

Thus, ΦNL is increased with adjustments to the pump power and the wave-

plates. The pulses are dechirped outside the cavity with a grating pair and the

spectra and autocorrelation are measured (Figure 2.14). There is very good agree-

ment between the experimental and simulated spectral features (compare the first

two rows of Figure 2.14).

To obtain an approximate value for ΦNL, we assume the temporal profile is

constant in the three fiber segments, and approximate the nonlinear phase as

ΦNL ≈
3∑

n=1

γn(Ipeak)nLn. (2.5)

We assume a constant peak power in the gain fiber and following SMF, which we

calculate from a measurement of the power before the output port. The peak power

in the SMF before the gain is calculated from an additional measurement of the

output coupling, to determine the energy that returns through the fiber after the

free-space section. For simulated pulses, the value of ΦNL is calculated directly with

Eq. 2.5. We then plot the experimental data points versus the theoretical values

of ΦNL in Figure 2.15. Because our experimental value of ΦNL is an estimate, the

apparently excellent quantitative agreement between the measured and simulated

results should be considered fortuitous. More importantly, the qualitative trends
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.14: Experimental results; top: simulated output spectrum with ΦNL: (a)
∼1π, (b) ∼3π, (c) ∼4π, (d) ∼8π; middle: experimental output spectrum with
approximated ΦNL: (e) ∼1π, (f) ∼3π, (g) ∼4π, (h) ∼8π; bottom: corresponding
interferometric AC of dechirped output pulses. Figure taken from Ref. [26].

from the experiment are well-aligned to both numerical simulations and analytic

theory. We conclude that we have a satisfactory understanding of pulse-shaping

in dissipative-soliton lasers.

In addition, because of the very good agreement, we can conclude that the exact

shape for the spectral filter and the saturable absorber transmission function have

only a small effect on the main parameters of the pulse. However, there is a par-

ticular mode (see the last column for Figure 2.5 for example), the flat-top soliton,

which is not observed in numerical simulations with a monotonic and approximate

saturable absorber but is predicted by analytic theory. Analytic theory predicts

that the quintic term of the saturable absorber must be negative for these modes
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(a)

(d)(c)

(b)

Figure 2.15: Experimental and numerically simulated laser performance vs. ap-
proximate ΦNL; dots: experiment, lines: numerical simulation; (a) pulse energy
before the NPE port, (b) breathing ratio, (c) dechirped pulse duration, (d) chirp.
Figure taken from Ref. [26].

to be stable. In other words, the saturable absorber cannot be monotonic. A

more-sophisticated model of the NPE that explicitly includes the two polarization

components with cross-phase modulation accounts not only for those pulses but

also for modes in Figure 2.14. However, as these flat-top pulses require a specific

saturable absorber and are difficult to find in an experimental setting, we focus

instead on the solutions with B<1. These are typically most-desired because they

combine high energy with ultra-short duration.
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2.4 Physical limits

A natural question to ask for both its intrinsic scientific significance and for its

implications for applications is: what are the limits to the pulse duration and

energy of dissipative-soliton lasers? We address this question theoretically (2.4.1)

and then with particular results pertaining to both the energy (2.4.2) and pulse

duration (2.4.3).

2.4.1 Area theorem

To understand the limiting behavior of a dissipative-soliton laser, further analysis

of the underlying theory from section 2.2 can be useful. We search for an area

theorem, or a simple relation that expresses the conditions that must be satisfied

for a pulse solution to exist [27]. Eq. 2.3 can be rewritten in terms of the pulse

energy and the full-width at half-maximum pulse durations:

E = F (B)G(D, Ω, δ) (2.6)

and

T =

(
|B| cosh−1(2 + B)√

|B2 − 1|

)
DΩ|δ|G(D, Ω, δ)

2(∆ + 2)γ
, (2.7)

where

F (B) =





cos−1(B) for |B| < 1

cosh−1(B) for B > 1,

(2.8)
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G(D, Ω, δ) =

√
2
3
(∆ + 2)

√
D2 (∆− 8) Ω2 + 12 (∆− 4)

D
√
|δ|Ω

√
Ω (D2Ω2 + 4)

, (2.9)

and

∆ =
√

3D2Ω2 + 16. (2.10)

Of course, Eqs. 2.6 and 2.7 could be combined with the elimination of B, but

instead we leave the expression in two parts because, as seen in sections 2.2 and

2.3, the spectral form of the dissipative soliton laser is crucial to its understanding,

and this form is identified with the B parameter.

The pulse energy is a product of G(D, Ω, δ), which is a function the system

parameters, and a function of the pulse parameter B. From Eq. 2.8, we see that

the nature of the energy depends critically on the value of B (Figure 2.16). When

B>1, a pulse solution exists at any value of the energy, much like in the case of

solitons of the nonlinear Schrdinger equation. However, when |B| <1 the pulse

energy is limited at B=-1, where the ansatz (Eq. 2.2) diverges and F(B)=π. This

feature distinguishes the CQGLE pulse solutions from other soliton solutions; for

a fixed system, a pulse has an energy maximum determined by Eq. 2.6. When

Eqs. 2.6 and 2.7 are combined, we can compare the relation of changes in the

pulse duration to those in the energy. For 0<B<2.217, the energy scales inversely

with pulse duration. For all other values of B, energy is proportional to the pulse

duration. This is a surprising result because in all previously-derived area theorems

for short pulse propagation (for studied soliton solutions) the pulse duration varies

inversely with the energy [27].

To test these ideas, a dissipative-soliton laser as in Figure 2.3 was constructed

with a 183-cm segment of single-mode fiber before 60 cm of gain fiber, and ter-
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Figure 2.16: Variation of the pulse energy as a function of the pulse parameter, B.
The dotted line separates solutions with |B| <1 for δ >0 from those with B>1 for
δ <0. Insets: spectral profiles plotted for the respective values of B. Figure taken
from Ref. [27].

minating with a 125-cm segment in a unidirectional ring cavity. All parameters

are held constant and we increase the pump power from zero. Initially, for a given

setting of the wave plates, after the laser reaches threshold at low pump power,

the laser operates in continuous-wave mode (corresponding to a plane-wave solu-

tion to Eq. 2.1). With further increase of the pump power, mode-locking occurs

and a single pulse traverses the cavity. A further increase in power increases the

energy and bandwidth of the pulse (Figure 2.17). This evolution is predicted by

both the analytical spectra as F(B) approaches the energy limit at π (Figure 2.17),

and the numerical simulations (as in section 2.2.1). The characteristic two-peaked

spectrum of normal-dispersion lasers develops more structure as it broadens.
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Figure 2.17: Top: theoretical spectra for increasing pulse energy, as B approaches -
1; middle: simulated spectra with increasing saturation energy; bottom: measured
spectra with increasing pump power. The rightmost spectra correspond to the
birth of the second pulse in the cavity. Figure taken from Ref. [27].

If the pump power is increased still further, a new pulse is generated in the

cavity and the spectral shape returns to the narrower spectrum of Figure 2.17(a)

(Figure 2.17(d)), the lowest-energy mode of a single pulse. This pattern, rep-

resented graphically in Figure 2.18, continues until the maximum pump power is

reached. Up to four pulses have been observed in the cavity. The minimum number

of pulses that can satisfy the area theorem exist at any given time.

The energy quantization and area theorem are direct consequences of the ana-

lytic theory. That is, the theory “contains” this information. This contrasts with

analysis based on the CGLE, where multi-pulsing is addressed as an addition to

the theory [6]. While it is clear that there has to be an energy limit, defined
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Figure 2.18: Mode-locked output power vs. pump power. The spectra on the right
are for the corresponding pump levels. Figure taken from Ref. [27].

qualitatively by the area theorem in Eq. 2.6, further experiments need to be done

to determine information about the exact quantitative upper energy limit. This

question is addressed in the next section.

2.4.2 Pulse energy

Dissipative soliton lasers are expected to generate stable high-energy pulses because

they can be mode-locked with net (normal) cavity GVD an order of magnitude

higher than that of fiber lasers with dispersion maps, and pulse energy is theoret-

ically expected to increase with increasing GVD [4, 6, 27]. In general, numerical

simulations of the complete dynamics of the fiber cavity show that higher-energy

solutions can always be stabilized with larger GVD.

To assess this theoretical prediction, we designed an experimental cavity with a
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long length of fiber before the gain [28]. A fiber laser was built as in Figure 2.3 but

with an additional pump laser to ensure enough pump power to achieve the highest

energy. 15 m of SMF is followed by 0.5 m of Yb fiber, with another 0.5-m segment

attached at the end of the gain fiber. The total cavity dispersion is ∼0.38 ps2.

The birefringent filter thickness is chosen to provide a 6-nm bandwidth, because

simulations predict narrower bandwidths at large normal dispersion. The setup

produces a variety of mode-locked states as the wave plates are rotated. The output

pulse train is monitored with a photodetector/sampling oscilloscope combination

with a bandwidth of 30 GHz. The interferometric and intensity autocorrelations

are monitored for delays up to ∼100 ps.

Stable operation with a single pulse in the cavity occurs for powers <200 mW.

Above this threshold, multiple pulses exist in the cavity, unless the spectrum is

broad and highly structured. The highest energy obtained for a stable and self-

starting single pulse is 22 nJ. However, if we relax the self-starting requirement,

26 nJ can be obtained. Diagnostics of the 26-nJ pulses show good agreement

with simulations corresponding to the same cavity and energy (Figure 2.19). The

dechirped pulse duration is 165 fs, which is close to the transform-limited value.

The temporal side-lobes contain ∼4% of the energy. As in simulations and analytic

theory, the spectrum exhibits the strong fringes that indicate that the pulse is at

the limit of the area theorem. A small pulse that contains ∼0.5% of the total pulse

energy occurs ∼4 ps from the main peak, which is the time interval expected from

the spectral fringe spacing. The transmitted spectrum (Figure 2.19a dotted) of

the NPE port is cleaner than the ejected spectrum with only ∼2% of the energy

in the side lobes and negligible small remote pulses. For applications that require

the cleaner pulse and spectrum, the transmitted pulse can be output via a second

beam splitter. Some pulse energy will be sacrificed with this approach, which will
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be illustrated below.

Figure 2.19: a) Spectra transmitted (dotted) and rejected (solid) from the NPE
port, b) dechirped autocorrelation (∼165 fs) and the autocorrelation of the zero-
phase Fourier-transform of the spectrum (∼140 fs, inset), c) simulated spectrum,
d) simulated dechirped pulse (∼195 fs). Figure taken from Ref. [28].

The major conclusion is that a dissipative soliton fiber laser can generate stable

pulses with very high energy despite the accumulation of nonlinear phase shifts

greater than 10π. Further investigation is still needed to determine if this is an

absolute limit to the stabilization of a pulse in the cavity in the face of large

nonlinear phase accumulation.
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2.4.3 Pulse duration

The general guidelines for achieving short pulses can be determined from the simu-

lation results in section 2.3 [29]. The spectral bandwidth broadens with decreasing

GVD, decreasing filter bandwidth, and increasing ΦNL. To investigate how these

parameters can be pushed to the limit in a realistic laser, we must focus on a

particular cavity type. As in the rest of this chapter, we will continue to focus

on Yb-doped systems with standard components because they have the greatest

current interest. The conclusions can be easily generalized to other specific fiber

laser systems.

From a broad survey of numerical simulations, the conclusion is that decreasing

GVD or increasing ΦNL are the best ways to increase spectral bandwidth, and in

addition tuning the GVD allows for better pulse quality. Therefore, to achieve the

shortest pulses, we need to design a cavity with the shortest lengths of fiber possible

(to minimize total GVD), pump with as much power as possible (to increase ΦNL),

and use the appropriate spectral filter bandwidth. This then also tells us the

expected practical limitations: how short the cavity can be built, and how much

pump power is available.

We first search for short pulses numerically by simulating a realistically short

cavity: 50 cm of SMF precedes 20 cm of gain fiber, which is followed by another

50 cm of SMF. A spectral filter with 40 nm bandwidth is used. We find the

shortest pulse in this cavity by increasing the energy until the simulations fail to

converge at an energy of 44 nJ. This results in a pulse at the limit of the area

theorem (see section 2.4.1) with spectral fringes (Figure 2.20(a)). The pulse can

be dechirped numerically to 34 fs (Figure 2.20(b)). The laser comprises ∼100 dis-

persion lengths. Therefore, the simulations suggest that 30 fs is a reasonable limit
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to practical all-normal-dispersion fiber lasers at 1 µm wavelength. Shorter pulses

may be generated if we had the freedom to further decrease the fiber dispersion,

for example. Commercial fibers at 1.55 µm allow for some flexibility for Er fiber

lasers which could allow for further decreases in pulse duration. The ∼30-fs limit

was achieved with a pulse with 44-nJ energy, which corresponds to 7 W of pump

power. However, realistic SMF lasers pumped in-core typically have 200-400 mW

of output power, which corresponds to only 2-3 nJ of pulse energy. The simulations

re-run with this energy give a minimum pulse duration of 70-80 fs.

(b)(a)

Figure 2.20: Short pulse numerical simulation: a) spectrum and b) dechirped
intensity profile (inset: 4.3-ps chirped pulse directly from the laser). Figure taken
from Ref. [29].

The role of third-order dispersion (TOD) begins to be noticeable in the simula-

tions for such short pulse durations, as expected. However, removing or doubling

the TOD in the fiber creates only small (<10%) changes in the 30-fs pulse. There-

fore, contrary to previous short pulse mode-locking mechanisms, the compensation

of higher-order dispersions in dissipative soliton lasers should not affect the per-

formance appreciably. Limits to stability that might arise from TOD need to be

considered separately.

Based on the simulation results, a dissipative soliton fiber laser was built (Fig-

ure 2.21). We increased the length of SMF after the gain segment to enhance
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Figure 2.21: Schematic of laser: QWP: quarter-wave plate; HWP: half-wave plate;
PBS: polarizing beam-splitter; WDM: wavelength-division multiplexer. Figure
taken from Ref. [29].

the value of ΦNL that can be reached with modest pulse energy. The fiber section

consists of 44 cm of SMF followed by 17 cm of Yb-doped fiber, which is followed by

170 cm of SMF. This gives a repetition rate of 80 MHz and a total GVD of 0.053

ps2. Two 980-nm diodes supply ∼900 mW of pump power. This design differs

from the one in Figure 2.3 because it has a second pump and a second beam-

splitter. The second beam-splitter is used to improve beam quality by coupling

the light out after NPE cuts off the lower-intensity parts of the pulse in the first

beam-splitter. A birefringent filter thickness is chosen to correspond with 15-nm

bandwidth. A variety of self-starting mode-locked states are observed by adjusting

the wave plates. The pulse with the shortest duration, when measured from out-

put 1 (Figure 2.22(a) inset) has a spectrum similar to the simulation result (Figure

2.20(a)), and when measured from output 2 is much cleaner (Figure 2.22(a)), as

expected. The pulse is dechirped to 70-fs duration (Figure 2.22(b)) and has 2-nJ

energy. The filter plays a crucial role; without it, mode-locking does not occur.
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(a) (b)

(c) (d)

Figure 2.22: Short pulse experimental results: a) spectrum from output 2 (spec-
trum from output 1 inset) and b) 68-fs dechirped autocorrelation from output 2
(autocorrelation of transform-limited pulse inset). Figure taken from Ref. [29].

2.5 Practical extensions

2.5.1 Core-size scaling

It is well known that increasing the size of the fiber core reduces nonlinear effects,

and therefore can increase the pulse energy available from a laser. Because the

dissipative soliton laser allows for nonlinear phase shifts greater than 10π, this

approach is a promising route to achieve pulse energies greater than 1 µJ directly

from a fiber laser.
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Double-clad fiber

Double-clad (DC) fiber, which refers to a second cladding used to guide pump light,

is a common technique to increase the power in fiber systems while maintaining the

single mode in the signal core [30, 31]. Particularly relevant to dissipative soliton

mode-locking are 25-nJ pulses at 80 MHz produced by An et al. [32]. The pulses in

this work are short (150 fs) but lack in pulse quality with energy in the wings out

to 3 ps. In this section we present the results of a high performance double-clad

dissipative soliton laser [33].

The design of the laser is the same as in Figure 2.3, but with the DC fiber

replacing most of the SMF. The Yb-doped DC fiber (Liekki DC1200 10/125) has

a 10-µm core, and the 2-m length is chosen to keep the GVD moderate. This

will allow short pulse durations, (see section 2.4.3) while ensuring that the fiber

is long enough to absorb most of the pump light. The multi-mode pump light is

coupled into the fiber laser through a home-built pump-signal combiner with ∼85%

coupling efficiency, and can deliver a maximum of 18 W. A 35-cm fiber collimator

precedes the gain and a 15-cm fiber collimator follows it, and both are made with

standard 6-µm core diameters. The splice loss caused by the fiber core mismatch

is reduced with a few millimeters of ∼8.5-µm-core fiber placed at the intersections.

This gives an estimated loss of about 0.5 dB. Experiments were performed using

filters with a range of spectral bandwidths. Optimum performance was achieved

with 20-nm filter bandwidth. With narrower filters, the output spectrum was

narrow and the energy was limited; with broader filters, no mode-locking could be

achieved.

Stable, self starting mode-locking is achieved with a repetition rate of 80 MHz

with up to ∼8 W of pump power. The resulting pulses have 31-nJ (2.2 W) energy,
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with 4.5-ps duration. These are dechirped to 80 fs outside the cavity (Figure 2.23b).

The spectrum exhibits the typical features of a dissipative soliton fiber laser (Figure

2.23a). If the pump power is increased beyond 8 W, the laser sporadically switches

to continuous-wave operation.

(a) (b)

Figure 2.23: (a) Output spectrum and (b) intensity autocorrelation of the
dechirped pulse. Inset: interferometric autocorrelation of the dechirped pulse.
Figure taken from Ref. [33].

After dechirping, the laser generates 80-fs pulses with ∼200-kW peak power

and well over 1 W of average power. This result is a landmark for fiber sources

as the pulse parameters are comparable to those of solid-state sources. This is the

first fiber laser to compete directly with performance of solid-state lasers.

Photonic crystal fiber

Photonic crystal fibers (PCFs) allow for very large single-mode cores. In re-

cent years, several high-performance implementations of PCF in dissipative soli-

ton lasers have successfully increased output powers and pulse energies of fiber

sources [34–36]. In this section, we discuss the details of a dissipative-soliton laser

based on PCF that reached a peak power of 1 MW [37].
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The cavity design is similar to that in Figure 2.3, but without the extra fibers

associated with collimators and pump coupling. Two lenses and two dichroic mir-

rors are used for pump steering (Figure 2.24). The Yb-doped PCF (Crystal-Fibre

DC-170-40-Yb) has a mode-field diameter of 33 µm, and the 1.25-m length was

chosen to optimize pump absorption. This fiber is nominally single-mode, with an

estimated dispersion of 0.019 ps2/m around 1- m operation wavelength. The multi-

mode pump allows for a maximum of 35 W of pump power at 976-nm wavelength.

The birefringent filter thickness was chosen to obtain a 12-nm bandwidth.

DDL

DC-170-40-Yb

DM

HWP QWP

PBS

QWPIsolator

BRP

976nm
Pump

DM

Figure 2.24: Experimental PCF ring laser design: DM, dichroic mirror; HWP and
QWP, half- and quarter-wave plates; PBS, polarizing beamsplitter; BRP, birefrin-
gent plate; DDL, dispersive delay line. Figure taken from Ref. [37].

Stable, self-starting mode-locking is achieved for a variety of wave plate settings.

With 24-W pump power, 142-nJ output pulses are generated, which corresponds

to 12 W of average power at an 80-MHz repetition rate. The pulses are dechirped

with -0.035 ps2 of GVD, to yield 100-nJ and 115-fs pulses (Figure 2.25). The peak

power is thus near 1 MW. Mode-locking is sustained over many hours and the

RF spectrum shows good stability with a peak to noise contrast of 70 dB. Scal-

ing from the double-clad result in the previous section, this laser should support

300-nJ pulses with similar pulse duration, which is in agreement with simulations,
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but this current setup is limited by pump power. The average and peak powers

demonstrated here exceed those of standard Ti:sapphire lasers and approach that

of state-of-the-art chirped-pulse oscillators. It should be noted that fiber endface

damage was observed, possibly due to self-Q-switching, which may occur as the

wave plates are adjusted. Careful surface preparation and existing endcap tech-

nology can be used to alleviate this damage.

Figure 2.25: Mode-locked output: (a) spectrum, (b) dechirped interferometric
autocorrelation (gray) and transform-limited envelope (dotted black), (c) RF noise
spectrum, 2 MHz span, 1 kHz resolution and (d) pulse train, 50 ns/div and 400
kHz bandwidth. Figure taken from Ref. [37].

An advantage of fiber-based systems is the possibility of compact integration

and elimination of all free-space sections that would require optical alignment.

The use of PCF sacrifices some of these practical advantages, as splicing of PCF

to ordinary fiber is not a standard capability. However, progress is being made on
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this front. Large-mode-area PCFs that can be bent have been developed recently.

Fiber-coupled pump combiners based on ring mirrors have been demonstrated, and

new ways to interface PCF to single-mode fiber technology are in development.

Integration of the laser design shown in Figure 2.24 is thus within the reach of

current technology.

Chirally-coupled core fiber

Recently-developed chirally-coupled core (CCC) fibers use a secondary core wound

around a large central core to create a distributed and integrated mechanism for

filtering of higher-order modes (HOMs) [38]. CCC fibers have achieved effectively

single-mode performance, without additional mode-filtering or mode-matching.

CCC fibers offer a core size comparable to that of PCF, with the additional pos-

sibility of simple integration, owing to the use of standard large-area step-index

fiber. In this section, we review an initial demonstration of the use of CCC fiber

in a mode-locked laser [39].

A Yb-doped piece of CCC with core diameter of 33.5 µm and a numerical

aperture (NA) of 0.06 has a mode area of ∼350µm2 and V = 6.1. This large

V number means that the core could support six HOMs. A helically-wrapped

leaky side core in optical proximity to the main core couples out these HOMs

through phase-matched interactions relating to the optical angular momentum of

the HOMs, with minimal effect on the fundamental mode [38] (Figure 2.26(a)).

The oscillator is designed in a standard dissipative soliton configuration (Figure

2.3), and is shown in Figure 2.26(b). Given the low 5-dB/m pump absorption of

the fiber, we used 3.9 m of CCC fiber for sufficient pump absorption. To avoid bend

losses and any possible need for an external HOM filter, we loosely coil the fiber
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Figure 2.26: (a) Side view of angle-cleaved CCC fiber. (b) CCC fiber oscillator
design: DM, dichroic mirror; PBS, polarizing beamsplitter; DDL, dispersive delay
line; BRP, birefringent plate; QWP and HWP, quarter- and half-wave plate; HR,
dielectric mirror. Figure taken from Ref. [39].

(30-cm diameter). In this initial demonstration, the laser is free-space pumped

with a maximum of 35 W at 976-nm wavelength and an iris is placed before the

output to filter out residual cladding light.

Stable, self-starting mode-locking at 53 MHz can be achieved with adjustments

of the wave plates. As an initial confirmation of HOM filtering in the laser, at ∼2

W of pump power, the output beam quality (a Gaussian beam with M2 ∼1.10-

1.15) is comparable to that of single-mode fibers with much smaller cores, and

no secondary pulses are visible 30-dB below the peak of the pulse out to 100 ps.

With an 8-nm spectral filter mode-locking is stable over hours with about 15 W

of coupled pump power (Figure 2.27). The pulse energy is 43 nJ (2.3 W of output

power), and the pulses can be dechirped to 195-fs duration, within 10% of the

transform-limit. Stable pulse energies of up to 47 nJ were obtained, but the pulses

had larger wings, extending out to 1 ps from the peak. A further increase of the

pump power results in additional pulses in the cavity. Small modulations on the

spectrum are attributed to interference with a small amount of HOM content.
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Figure 2.27: (Mode-locked output: (a) spectrum (0.1-nm res.), (b) chirped auto-
correlation, and (c) dechirped interferometric autocorrelation. (d) Spectrum after
propagation trough 1 m of SMF (solid) compared to simulation (dashed). Figure
taken from Ref. [39].

We estimate that the HOMs carry on the order of 0.1% of the energy, which

confirms the strong fundamental mode selection. In addition, we verify the peak

power by launching 2-nJ dechirped pulses into 1 m of SMF with a 5-µm core diam-

eter, and comparing the spectral broadening to simulation (Figure 2.27(d)). The

excellent agreement confirms the quality of the pulses generated by the dissipative-

soliton laser fabricated with CCC fiber.

The development of pump combiners and pigtailed isolators for CCC fiber is

underway. We expect that in the near future these will enable construction of high-

energy dissipative-soliton lasers with standard splicing technology that is currently

used for single-mode fibers. As a consequence of the development of CCC fiber

68



and associated components, all needed elements are in place to construct integrated

fiber lasers that will out-perform solid-state lasers.

2.5.2 Environmental stability

For wide adoption of fiber lasers beyond the laboratory environment, mode-locked

operation must be stable against environmental perturbations. For example, ther-

mal and mechanical perturbations can induce random birefringence in fiber, which

can severely alter the performance of the laser. The use of highly-birefringent,

polarization-maintaining (PM) fiber limits the light to a linear polarization in one

axis, and suppresses the effects of any induced birefringence. In this section we

review the application of PM fiber to a dissipative soliton laser to achieve an

environmentally-robust system [40].

In a PM fiber cavity, nonlinear polarization evolution is not suitable as a sat-

urable absorber because there is only one polarization in the fiber. As a conse-

quence, we use a semiconductor saturable absorber mirror (SESAM) as a saturable

absorber. The cavity is thus designed in a Fabry-Perot configuration, for simple

implementation of a reflective SESAM (Figure 2.28). The fiber section consists of

1 m of SMF followed by 60 cm of Yb-doped gain fiber and another 40 cm of SMF.

The SESAM (from BATOP GmbH) has ∼ 35% modulation depth, a ∼40-nm spec-

tral bandwidth and a relaxation time constant of ∼500 fs. The birefringent filter

has a bandwidth of 12 nm. Output 3 (Figure 2.28) is the main laser output, with a

coupling ratio which is tuned with the quarter-wave plate, while the other outputs

serve to monitor pulse evolution in the cavity.

With appropriate settings of the wave plates, mode-locking is achieved. The
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Figure 2.28: Schematic of an environmentally-stable linear dissipative soliton fiber
laser: QWP: quarter-wave plate; HWP: half-wave plate; PBS: polarizing beam-
splitter; WDM: wavelength-division multiplexer; HR: high reflection mirror. All
components are PM components. Figure taken from Ref. [40].

wave plate settings are critical in a PM fiber cavity because the polarization state

of the light must be properly aligned to the appropriate axis of the fiber to avoid

deleterious secondary structure. The spectral profiles from all outputs exhibit the

steep spectral sides and peaked edges that are typical of dissipative soliton lasers

(Figure 2.29). Spectral fringes with ∼0.7-nm spacing indicate possible remote

pulses located ∼5 ps from the main pulse on output 1, which roughly matches the

polarization mode delay due to the total linear birefringence. However, output 2

and 3 do not have visible fringes (Figure 2.29(a)). This suggests that any residual

energy in the other polarization states or secondary structure is ejected at output

1 (Figure 2.28).

The main output emits pulses at 33-MHz repetition rate with a pulse energy

of 2.2 nJ (74 mW of average power), a pulse duration of ∼6 ps (Figure 2.29(b)

inset), and a dechirped pulse duration of 310 fs (Figure 2.29(b)). This mode of

operation is truly insensitive to external mechanical perturbations of the fiber and
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was unchanged and sustained until intentionally interrupted. In contrast to non-

PM versions of dissipative soliton lasers, only limited modes are observed with

the PM cavity, all similar to that of Figure 2.29. This limitation is currently not

understood, but this work successfully demonstrates the translation of a dissipative

soliton laser to a environmentally stable configuration.

(a) (b)

Figure 2.29: Output (a) spectrum and (b) dechirped autocorrelation of the
environmentally-stable dissipative soliton laser. Inset: chirped autocorrelation.
Figure taken from Ref. [40].

2.6 Giant-chirp oscillators

The results presented to this point are exclusively devoted to oscillator perfor-

mance. However, many applications require more peak power than an oscillator

can provide, and so require that the pulses be amplified. Large-mode-area fibers

are employed to reduce nonlinear effects in chirped-pulse amplification (CPA) [41].

A typical fiber CPA system has several stages of amplification, a stretcher, a pulse-

picker, and a compressor (Figure 2.30). There is clear motivation to simplify this

system, to provide greater integration at lower cost. In this section, we review

and advance a method to extend dissipative soliton mode-locking to a parameter

regime that allows for dramatic simplification of a typical CPA system [42].
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Figure 2.30: Components of fiber CPA systems. The small boxes inside the giant-
chirp oscillator box represent the components of a standard CPA system that are
replaced by the giant-chirp oscillator. Figure taken from Ref. [42].

We begin with an analytical investigation by rewriting Eq. 2.1 in a non-

dimensionalized form,

∂U(z, t)

∂z
= gU(z, t)+(1−i

DΩ

2
)
∂2U(z, t)

∂t2
+(

α

γ
+i)|U(z, t)|2U(z, t)+

δ

γ2
|U(z, t)|4U(z, t),

(2.11)

where now U is the product of the electric field envelope and
√

γ and t is the

product of the local time and
√

Ω. We again examine the trends given by the

solution of this equation with the exact particular solution Eq. 2.2. The variation

of the pulse parameters as a function of GVD is shown in Figure 2.31.

With increasing GVD the pulse duration, chirp and energy all increase, the

bandwidth decreases slowly, and the dechirped pulse duration increasingly deviates

from the transform-limited duration. Pulses from a system with large normal

GVD are therefore qualitatively identical to the pulses generated with lower GVD,

but with large quantitative differences. These quantitative differences make the

oscillator an ideal source for an initial stage in a CPA system. In particular,

large GVD translates to long fiber, which in turn translates to low-repetition rate,

removing the need for a pulse-picker. The large chirp means that there is no

need for an additional stretcher. And finally, because there is no pulse-picker or
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Figure 2.31: Variation of exact solution normalized pulse parameters with normal-
ized dispersion. Figure taken from Ref. [42].

stretcher, and because the oscillator produces high energies, one or more stages of

pre-amplification can be removed [42].

Scaling the repetition rate of fiber oscillators presents several challenges. Third

order dispersion, nonlinear switching, relaxation oscillations and increased drift

become apparent with the long fiber lengths required for low-repetition rate oscil-

lators. In addition, it is well known that low-repetition fiber oscillators can also

give rise to low-coherence noise bursts [43, 44]. For example, a fiber laser with

31-kHz repetition rate, 2.7-µJ pulse energy and 300-ns pulse duration [45], while

showing no signs of noise with typical spectral and photodiode measurements of

the chirped pulse, further investigation in our lab showed the pulses to be unaf-
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fected by large amounts of added GVD; the phase is not coherent, making such

high energy pulses unusable for applications requiring large peak power. Given

the existence of such noisy pulses, it is important to clearly verify pulse coherence

with a measurement such as a dechirped autocorrelation. Recent low repetition

rate fiber oscillators [46, 47] do not prove the coherence of their pulses despite

the similarities to the noisy pulses in Ref. [45], such as a smooth spectral profile

and very large energies. Other results [48,49], while not clearly demonstrating co-

herence, have properties resembling coherent normal dispersion solutions, such as

steep spectral sides and modest pulse energies, but have low energy, narrow band-

width and orders of magnitude more chirp than can be practically compensated

for a useful extension of CPA.

To investigate a low-repetition rate dissipative soliton oscillator, a giant-chirp

oscillator (GCO) is constructed as in Figure 2.3, but with a longer fiber before

the gain, giving a net GVD of 1.4 ps2 and a repetition rate of 3.2 MHz. A 62-m

segment of SMF precedes 40 cm of Yb-doped gain fiber, and a 50-cm segment of

SMF follows the gain fiber. A birefringent filter was chosen to provide a 10-nm

bandwidth. A typical output of the oscillator has a spectral shape characteristic

of dissipative soliton lasers (Figure 2.32(a)). The pulse is 140-ps long out of the

oscillator, which is ∼300 times longer than the transform limit of ∼500 fs. This

transform-limited pulse would require ∼500 m of fiber (∼10 ps2) to reach that

duration, which is about 10 times more fiber than is in the cavity. The output

pulse energy is 15 nJ.

The potential utility of the giant-chirp oscillator is illustrated by a demonstra-

tion of CPA. The pulses of Figure 2.32 seed an SMF preamplifier, the output of

which was fed into a large-mode area (∼1000 µm2) PCF amplifier pumped with a
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(a) (b)

(d)(c)

5 nm 140 ps

5 nm 880 fs

Figure 2.32: Giant-chirp oscillator: a) spectrum and b) pulse measured by a detec-
tor with 50-ps resolution. c) Solid: amplified spectrum; dotted: amplified sponta-
neous emission spectrum and d) autocorrelation of amplified and dechirped pulse.
The pulse duration assuming an approximate deconvolution factor of 1.5 is shown.
Figure taken from Ref. [42].

maximum of 25 W (e.g. see Figure 2.30). The 140-ps duration of the giant-chirp

oscillator is long enough for amplification of pulses to up to 10 µJ of energy with-

out distortion. The pulse energy is 67 nJ after the preamplifier, and 1.3 µJ after

the PCF amplifier, which corresponds to 4.3 W of average power at the 3.2-MHz

repetition rate. The final pulse energy is limited by the available pump power (25

W), not by the onset of nonlinear distortion. The amplified pulses are dechirped

to 880-fs duration (Figure 2.32(d)) by gratings that supply 11 ps2 of anomalous

GVD. The final pulse duration is within a factor of 2 of the transform limit.

With a custom fiber GVD profile, the repetition rate could be scaled arbitrarily
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with the same output pulse parameters. However, as an alternative with standard

fibers, decreasing the spectral filter bandwidth can have the opposite effect to

increasing the GVD, the chirp and chirped pulse duration decrease and the band-

width increases. In the limit of a very large filter, or no external filter, this means

pulses with very narrow (< 1 nm) bandwidths and large chirp, but in the limit of

a narrow filter, this allows for larger bandwidths and less chirp. We demonstrate

how this concept allows scaling the repetition rate to 562 kHz.

Guided by this understanding, we can optimize our design for a seed source for

a CPA system. We begin by targeting a useful repetition-rate for CPA, ∼500 kHz.

An oscillator at this repetition rate would be expected to be highly chirped because

of the large amount of normal GVD. The chirp can be decreased to a dechirpable

magnitude with a 2-nm spectral filter. The spectral filters used in the rest of this

chapter are based on birefringent quartz plates and have a sinusoidal transmission

profile. To achieve narrow filter bandwidths (. 5 nm), larger, costly plates must

be used. Furthermore, the additional sinusoidal transmission peaks of the filter

can interfere with mode-locking and promote parasitic lasing. As an alternative,

we use a diffraction grating and a collimator (see section 1.3.2). The overlap of the

wavelength dependant spatial beam with the Gaussian mode of the fiber results in

a spectral filter profile of the same type. This Gaussian profile has the additional

benefit of producing a larger solution space in numerical simulations, presumably

because the filter is closer to the intrinsic dissipative soliton solution of the system

(section 2.2). Other techniques can be used to produce a single peaked Gaussian

spectral filter, such as the appropriate combination of birefringent plates, but we

found the grating filter to be the most practical approach with components at

hand.
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The experimental setup is identical to previous all-normal dispersion systems

with the exception of the design of the spectral filter (Figure 2.33). 362 m of single-

x x

SMF Yb-doped

     fiber

HWPHWP

QWP

QWP

pump

SMF

Figure 2.33: Schematic of experimental system. QWP: quarter wave plate; HWP:
half wave plate; SMF: single-mode fiber.

mode fiber (SMF) precedes 60-cm ytterbium-doped gain fiber which is followed by

a short 50-cm length of SMF, minimized to reduced nonlinearity. With a 2-nm

bandwidth gaussian spectral filter (600 lines per mm diffraction grating at 45◦

incident angle placed 8.2 cm from the collimator), the cw laser efficiency is 27%

and stable single-pulsed mode-locking was achieved at the fundamental repetition

rate of 562 kHz (Figure 2.34). With 130-mW pump power, the output power was

14 mW, corresponding to 25-nJ pulse energy. The pulse was dechirped with 11-ps2

of anomalous dispersion to a duration of 800 fs, 1.5 times the transform limited

duration. The dechirped duration could be further reduced if TOD is removed

from the dechirping setup. Because of the large net dispersion, the intrinsic spectral

bandwidth is narrow, and using a narrow filter, the characteristics should be similar

77



(a)

(d)

(b )

(c)

Figure 2.34: 562-kHz oscillator: output (a) spectrum; (b) pulse; (c) calculated
transform-limited pulse; and (d) dechirped autocorrelation.

to a dissipative soliton at a much higher repetition rate with a larger filter. For

example, the spectrum shows the characteristic steep sides and 2 peaked structure

of normal dispersion mode-locking (Figure 2.34(a)), the autocorrelation has the

secondary structure inherent with steep-edged spectra (Figure 2.34(d)), and the

dechirped pulse is close to the transform limited-duration. The chirped pulse

was measured directly with a fast optical detector and oscilloscope with a 30-ps

response time, showing a chirped duration of 130 ps (Figure 2.34(b)). If desired,

the repetition rate can be extended still further, but only at a sacrifice to the

spectral bandwidth.

At 562-kHz repetition rate, the laser is subject to drift of the output pulse

parameters as a consequence of environmental perturbations to the long lengths
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of fiber in the cavity. This drift can be minimized in a number of ways including

replacing the saturable absorber, using PM fiber, using a faraday rotator, but each

technique comes with a trade of performance. These issues must be addressed

before low repetition rate dissipative soliton oscillators can find broader use for

applications.

This low-repetition rate oscillator has one of the largest pulse energies reported

from a standard single-mode fiber oscillator. Further work must be done to inves-

tigate the pulse energy limitations for such dissipative soliton systems.

These experiments were performed with components available in our labora-

tory, and are not intended to represent the limit to this approach. For example,

some applications require lower repetition rates, which will facilitate larger pulse

duration and chirp, which will in turn allow for the further extension of the peak

power. More chirp does come at the expense of bandwidth, and further investiga-

tion is need to determine the optimum chirp to maximize amplifier peak power.

Custom fibers and operation at 1.5-µm wavelength could also be beneficial as there

is a larger degree of freedom in the selection of fibers with various values of GVD.

2.7 Conclusions

The development of stable and reliable femtosecond lasers depended on the capa-

bility of introducing controllable anomalous dispersion into laser cavities. Lasers

based on soliton-like pulse-shaping have dominated ultrafast science and technol-

ogy over the past two decades. Fiber lasers offer major practical advantages over

solid-state lasers, but the energy of soliton pulses in fiber lasers is inadequate for

many photophysical applications, and as a consequence fiber lasers have found
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limited use compared to solid-state lasers.

Pulse-shaping in normal-dispersion lasers is dominated by spectral filtering of

a chirped pulse in the cavity. Such pulses are modeled well by solutions to the

cubic-quintic Ginzburg-Landau equation, which confirms the role of the dissipative

processes. Pulses that breathe weakly as they traverse the cavity are referred to

as dissipative solitons. The normal-dispersion lasers provide a convenient setting

for studying this new class of nonlinear wave. The dissipative-soliton solutions can

accumulate remarkably large nonlinear phase shifts without distortion or wave-

breaking, and this property translates into unprecedented pulse energies from a

fiber laser. Lasers constructed of ordinary single-mode fibers can generate 100-fs

pulses with energy as high as 30 nJ, to date. Such lasers are the first fiber lasers to

compete directly with solid-state lasers in performance. Normal-dispersion lasers

can also be designed to generate highly-chirped pulses at low repetition rates.

Such giant-chirp oscillators hold significant promise for simplifying short-pulse fiber

amplifiers.

Most of the results presented in this chapter represent the initial demonstrations

of new concepts. Dissipative-soliton lasers thus offer the best performance among

femtosecond fiber lasers to date, along with new regimes of operation. When

these properties are combined with the simple designs that are possible through

the elimination of intracavity anomalous dispersion, attractive instruments result.

With further development and engineering, the dissipative-soliton lasers should

have major impact on ultrafast science and technology.
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CHAPTER 3

PULSE SHAPING MECHANISMS IN NORMAL-DISPERSION

MODE-LOCKED FIBER LASERS1

3.1 Introduction

Ultrashort pulses are stabilized in an oscillator when the effects of optical non-

linearity are exactly balanced by other processes after one cycle around the cav-

ity. The most common way to compensate nonlinearity is through group-velocity

dispersion (GVD). When the GVD is anomalous, pulses are formed by a balance

between positive nonlinear and negative dispersive phase changes. Before 1993, re-

searchers operated fiber lasers almost exclusively with large net anomalous GVD,

in the soliton-like regime. At the next level of performance, stretched-pulse or

dispersion-managed soliton ( [2, 3]) operation exists for net anomalous or small

normal GVD, and allows femtosecond pulses with up to nanojoule energies and

∼ 10 kW peak power levels.

Recent work has shown theoretically ( [4, 5]) and experimentally ( [6, 7]) that

much higher pulse energies and peak powers can be achieved in fiber lasers that

operate at large normal dispersion. In the normal dispersion regime, solitons do

not form, so new pulse-shaping processes are needed. The aim of this chapter is to

present theoretical and intuitive understanding of the pulse-shaping processes and

pulse evolutions in normal-dispersion fiber lasers, which includes but is not limited

to dissipative soliton mode-locking (chapter 2). The results of numerical simula-

tions that accurately model experiments will be presented. Pulses that propagate

in normal-dispersion media are susceptible to distortion and break-up owing to op-

1The majority of this chapter is reprinted, with permission, from Ref. [1].
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tical wave breaking [8]. To compensate nonlinear phase and avoid wave-breaking,

dissipation is required and plays a key role in the pulse-shaping. Several distinct

regimes of mode-locking can be labeled usefully by the pulse that forms in each

one. These include

• Dissipative solitons [5, 7, 9–32]

• Passive similaritons (pulses that evolve in a self-similar fashion have been

dubbed similaritons) [33–37]

• Amplifier similaritons [38–41].

In addition, we consider a pulse evolution that has been exploited experimentally

in lasers with dispersion maps, but has not been understood theoretically ( [34,

42]). Ilday et al. used the phrase “wave-breaking-free” to describe these pulses,

but that conveys no insight about the pulse formation or evolution that underlies

the property. The analysis shows that the pulse formation depends crucially on

dissipation, while the evolution is dominated by the presence of the dispersion map.

We suggest that these pulses be called stretched dissipative solitons. These mode-

locking regimes will be examined numerically and compared to recent experimental

works. For each regime, we will address the following questions:

• How do the relevant physical processes balance to shape the pulse?

• What identifies the regime? How is it unique?

• What are the performance advantages?

The chapter is organized as follows. Dissipative solitons in all-normal-dispersion

lasers will be explained in section 3.2. This analysis is distinguished from that in
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chapter 2 by using numerical simulations to determine, without approximation,

what is fundamentally important to start and stabilize these pulses. Section 3.3

addresses dispersion-managed cavities with net normal GVD. We find that two

distinct pulse evolutions can occur for a single set of cavity parameters. The

formation of self-similar pulses in the passive normal-dispersion fiber of a laser

(section 3.3.1) will be described, and contrasted with dissipative-soliton formation.

The second regime in a mapped cavity is the stretched dissipative soliton. In

section 3.3.2 we show that these pulses are formed similarly to dissipative solitons,

but their evolution is defined by the dispersion map. Section 3.4 briefly considers

normal-dispersion lasers in which self-similar evolution occurs in the amplifier, not

in passive fiber. Spectral filtering is critical to stabilizing this evolution, which has

the remarkable feature of being a local nonlinear attractor in the gain fiber. The

different regimes will be summarized and compared in section 3.5.

3.2 Dissipative soliton fiber lasers

In 2006 Chong et al. introduced a new femtosecond mode-locking regime based on

cavities with only normal-dispersion components [9] (chapter 2). This was a ma-

jor departure from prior approaches to femtosecond pulse generation, all of which

relied on dispersion compensation. The pulses depend on the balance of both am-

plitude and phase modulations, and are thus considered dissipative solitons, accu-

rately modeled with a quintic Ginzburg-Landau master equation [5]. To date, the

best performance from single-mode fiber lasers has been achieved with this mode-

locking mechanism. 100-fs pulses with energies of ∼30 nJ and peak power levels of

∼300 kW can be generated by lasers based on SMF [7], and megawatt peak power

can be reached in large-mode area fiber ( [27,30–32]). Furthermore, the dissipative
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soliton regime has been extended to large net dispersion (> 1 ps2), which allows for

high energy pulses with large and linear chirp [20]. This giant-chirp oscillator can

significantly reduce the complexity of chirped-pulse amplification systems. In this

section, the key mechanisms in normal dispersion mode-locking will be revealed in

the context of an all-normal dispersion dissipative soliton (DS) laser. Specifically,

we find that amplitude and phase modulations have equal importance, and that

large nonlinear phase shifts are compensated by propagation of a chirped pulse in

normal-dispersion fiber. The simulations are designed to model a realistic laser

based on Yb:fiber operating at 1 µm. Details and parameters of the simulations

are in the Appendix.

To begin to understand DS mode-locking, the fiber sections are modeled as if

they are lumped into a single segment of gain fiber, which is the simplest real-

istic model for a dissipative soliton fiber laser (Figure 3.1). The resulting pulse

gain fiber:

+GVD & NL
saturable

absorber
spectral filter

output0 L

Figure 3.1: Schematic of the simplest all-normal dispersion dissipative soliton laser.

parameters and evolution are those of a typical DS laser (Figure 3.2). In the fiber,

the spectrum develops structure (Figure 3.2(a)) and the pulse duration increases

(Figure 3.2(b)). The saturable absorber slightly reduces the pulse duration. The

spectral filter cuts away the spectral structure, and because the pulse is chirped,
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restores the pulse to its original duration. Further insight is gained by examining

the temporal magnitude and phase. The temporal phase is the same at the end

of each segment, which implies that the saturable absorber and the spectral filter

have little effect on it. However, if we look into the fiber section (Figure 3.2(c))

we see that the temporal phase evolves in such a way that it begins and ends

with the same profile. Thus, for this pulse shape, normal dispersion compensates

a self-focusing nonlinear phase shift.

(a) (b)

(c)

Figure 3.2: Evolution of the (a) spectrum and (b) temporal profile of a DS plotted
after the filter (solid), after the fiber (dashed), and after the saturable absorber
(dotted); (d) evolution of the temporal phase in the fiber section.

To demonstrate that this picture is not an artifact of combining the fiber sec-

tions, and to verify and generalize this conclusion, we also simulate a cavity that

artificially separates GVD, nonlinearity and the saturating gain into independent

sections of the oscillator, in that order (Figure 3.3). In this case, as before, the
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Figure 3.3: Schematic of an all-normal dispersion dissipative soliton laser with
physical processes separated for clarity.

spectrum gains structure in the nonlinear section (Figure 3.4(a)) and the pulse

duration increases due to the GVD (Figure 3.4(b)). The saturable absorber short-

ens the pulse. Also, as in Figure 3.2, the spectral filter cuts away the spectral

structure, and because the pulse is chirped, decreases the pulse back to its origi-

nal duration. The primary difference in this scenario is that the temporal phase

evolves in the normal dispersion fiber (Figure 3.4(c)). However, as in Figure 3.2,

the change in the phase due to the normal GVD cancels the nonlinear phase shift

(Figure 3.4(d)). The spectral filter also contributes to the temporal phase, but it

is negligible compared to that from the nonlinearity and the normal GVD (Figure

3.4(d)).

Based on the simulations, we can say that linear phase accumulation is balanced

by spectral filtering and saturable absorption to create the pulse amplitude, and

simultaneously GVD balances the nonlinear phase accumulation in a DS. These

balances are illustrated in Figure 3.5. Remarkably, a chirped pulse that propagates

through normal-GVD material can accumulate a linear phase that is negative, i.e.,

that one would ordinarily associate with propagation at anomalous GVD. This

feature is critical to the generation of high-energy pulses.
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(a) (b)

(c)
(d)

Figure 3.4: Evolution of the: (a) spectrum, (b) pulse, and (c) temporal phase of
the solution to a normal dispersion oscillator plotted after the filter (solid), after
the GVD (dashed), after the nonlinearity (dotted), and after the saturable ab-
sorber (dashed-dotted). (d) Change in phase due to the GVD (solid), nonlinearity
(dashed), and spectral filter (dotted).

3.3 Dispersion-managed fiber lasers

In a dispersion-managed cavity, several distinct operating regimes exist.

Dispersion-managed solitons occur for net GVD near zero, and for large normal

GVD two distinct regimes can co-exist for a single set of cavity parameters. One

of these regimes features parabolic pulses that evolve self-similarly in a long seg-

ment of passive fiber [33]. In section 3.3.1 we will investigate how nonlinearity is

managed in this regime, comparing and contrasting with dissipative soliton mode-

locking. The second pulse evolution found at large normal GVD was first observed

experimentally by Ilday et al., who described it generically as ”wave-breaking-free.”
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Figure 3.5: Qualitative illustration of the amplitude and phase balances in a DS
laser.

This mode was later exploited by Buckley et al. to achieve 100-fs pulses with en-

ergy above 10 nJ for the first time. It features highly down-chirped pulses with

large breathing ratios, and supports stable pulses with peak powers of ∼100 kW

( [34,42]). However, a theoretical understanding has not been reported to date. In

section 3.3.2 we will present the first theoretical results that exhibit this evolution.

These demonstrate that the pulses are shaped by the same mechanisms as dissi-

pative solitons, but have additional evolution defined by the particular dispersion

map.

We simulate a realistic dispersion-managed cavity as in Ref. [34], e.g. (Ap-

pendix A.2). SMF precedes a Yb-doped gain fiber, which is followed by a saturable

absorber, an output coupler and gratings that supply anomalous GVD, in that or-

der (Figure 3.6). We consider only linear anomalous-GVD segments. It is typically

desirable to avoid soliton formation in high-energy lasers, which motivates the use

of linear anomalous-GVD segments. As a practical matter, in 1-µm systems the

anomalous GVD is commonly provided by diffraction gratings. In most cases, the
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Figure 3.6: Schematic of a typical 1-µm dispersion-managed fiber laser.

conclusions we find can be generalized to 1.55-µm systems, where the ready avail-

ability of anomalous-dispersion fiber makes nonlinear anomalous-dispersion seg-

ments more common. By varying the initial conditions of the simulations slightly

(different white noise or Gaussian initial conditions), the two solutions shown in

Figure 3.7(a) can be seen.

3.3.1 Passive self-similar fiber lasers

The solid line in Figure 3.7 is the well-known self-similar pulse solution [33]. The

pulses have minimal spectral evolution. They are always positively chirped, with

a nearly-parabolic pulse profile. The pulse duration increases monotonically in the

passive fiber, and the maximum duration occurs at the transition from normal to

anomalous dispersion. The temporal breathing ratio ranges from 10 to 50 under

typical conditions. The dispersive delay is primarily responsible for returning the

pulse to the original duration after a round-trip of the cavity. The self-similar pulses

can tolerate large nonlinear phase shifts without distortion or wave-breaking. As

there has been some confusion in the literature, we emphasize that these similari-

tons are the asymptotic solutions of the nonlinear Schrodinger equation with only

nonlinearity and normal GVD. These are distinct from the similaritons that form
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(a) (b)

(c) (d)

Figure 3.7: Evolution of the (a) pulse duration (the full-width at half of the max-
imum) and (b) spectral bandwidth (the full-width at a fifth of the maximum)
and output (c) spectra and (d) chirped pulses for self-similar (solid) and stretched
dissipative soliton (dashed) mode-locked pulses given identical cavity parameters.
DDL: dispersive delay line.

in the presence of gain, and which constitute nonlinear attractors [43]. The first

similariton laser [33] was not a similariton amplifier with the cavity feedback.

On initial inspection, it would seem that the self-similar propagation has little

relation to dissipative-soliton formation. The initial similariton laser was designed

to minimize the effects of gain filtering, which would in turn minimize perturbation

of the self-similar propagation. To address these questions, we performed a series

of simulations with the parameters varied continuously but with fixed average pa-

rameters, and we found that a continuous transition can be made from dissipative

soliton formation to self-similar evolution. (The parameters of the simulations are

in Appendix A.2.1.) Thus, we conclude that the self-similar regime does rely on
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dissipation. It is desirable to have a more-detailed understanding of how the tem-

poral amplitude and phase of the pulse balance around the cavity, and this is also

provided by the simulations.

The results for the end-points of the series (i.e., the ”pure” dissipative soli-

ton and the passive similariton) are shown in Figure 3.8. Although the average

parameters of the systems are identical, clear differences remain in the converged

solutions. The bandwidth of the DS laser is larger and the spectrum more square

(Figure 3.8(a)). In the DS laser, the increase of the pulse duration from the normal

dispersion is compensated by the filter and the saturable absorber, whereas in the

mapped cavity the anomalous dispersion also plays a major role (Figure 3.8(b)).

As expected, the self-similar pulse becomes more parabolic (Figure 3.8(d)) than

the DS pulse (Figure 3.8(c)).

To compare the performance of these two systems, the pump power is increased

in both the DS and the self-similar cavities with the same net parameters until the

maximum energy is reached. As is expected in DS lasers ( [5, 18]), the spectrum

of the high energy output becomes broad and structured, and features prominent

peaks at the edges (Figure 3.9(a), solid line). The self-similar spectrum, although

narrower than the DS spectrum, broadens while it maintains a smooth parabolic

profile (Figure 3.9(a), dashed line). Because the bandwidth approaches that of the

gain filter, the self-similar pulse has a significant pulse cutting contribution due

to the spectral filter (Figure 3.9(b), dashed line). The respective pulse evolutions

(Figure 3.9(b)) clearly distinguish the two regimes. Because of the dispersion map,

the self-similar pulse is longer and more parabolic (Figure 3.9(d)) than the DS pulse

(Figure 3.9(c)).

The numerical solutions confirm the basis of the term self-similar. Figure 3.9(f)
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(a) (b)

(c) (d)

Figure 3.8: (a) Spectrum after the first SMF and (b) temporal evolution of the DS
(solid) and self-similar (dashed) pulses. (c) Pulse after the first SMF for the DS
and the (d) self-similar pulses; the dotted lines represent parabolic fits.

shows the evolution of the pulse through the fiber section in the self-similar laser.

The pulse evolves self-similarly in a parabolic form, while the form of the DS

pulse changes continuously and is not self-similar (Figure 3.9(e)). The maximum

output energy for the DS pulse is 30 nJ and for the self-similar pulse is 57 nJ.

This difference stems from the extended duration of the self-similar pulse due

to the additional dispersion map in the cavity, which decreases the peak power.

As another measure of performance, the nonlinear phase φNL =
∫

γ(z)Po(z)dz

is useful for quantifying the peak power that each mechanism can accommodate.

φNL = 10 for the self-similar mode and φNL = 20 for the DS mode. While in

this case the energy tolerated by the self-similar mode is greater, it occurs with

less total phase shift. This is important because in a real cavity, to operate in
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(a) (b)

(c) (d)

(e) (f )

Figure 3.9: (a) Spectrum after the first SMF and (b) temporal evolution of the DS
(solid) and self-similar (dashed) pulses. Pulse after the first SMF for the (c) DS
and the (d) self-similar pulses; the dashed lines represent parabolic fits. Temporal
evolution of the pulse in the first section of the fiber of the (e) DS laser and the (f)
self-similar laser; the dashed (solid) line represents propagation through half (all)
of the fiber.

the self-similar mode with sufficient pulse breathing, more fiber is necessary, which

in turn carries more nonlinearity. As a consequence, the maximum energies for

self-similar and DS mode-locking regimes will be comparable.

To illustrate how the basic physical processes balance each other to form a sta-

ble self-similar pulse, we examine the evolution of the high energy self-similar pulse

shown in Figure 3.9. The spectrum broadens and approaches a parabolic form on

propagation in the long passive fiber, and is returned to its original form after the
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(a) (b)

(c) (d)

Figure 3.10: Evolution of the: (a) Spectrum, (b) pulse, and (c) temporal phase of
the solution to a normal dispersion oscillator plotted after the filter (solid), after
the GVD (dashed), after the nonlinearity (dotted), and after the saturable absorber
(dashed-dotted). (d) Change in phase due to the SMF (dashed), anomalous GVD
(dashed), and spectral filter (dotted).

gain filter (Figure 3.10(a)). The temporal profile also broadens as the pulse propa-

gates in the fiber, and the positive pulse chirp increases. The anomalous-dispersion

segment compensates most of the pulse broadening, with small contributions from

the gain filter and the saturable absorber (Figure 3.10(b)). The large tempo-

ral phase accumulation in the fiber is canceled by the dispersive delay (Figure

3.10(c)), with a negligible contribution from the filter (Figure 3.10(d)).

The balancing of amplitude and phase modulations in a self-similar laser are

illustrated in Figure 3.11. The saturable absorber and the spectral filter play very

similar roles as in the DS laser, but the roles of dispersion and nonlinearity play out

differently. Of course, the strong evolution in the self-similar laser contrasts with
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the nearly-static solutions in a DS laser. In a self-similar laser the nonlinearity

interacts with the normal dispersion to linearize the spectral phase such that the

temporal phase can then be compensated by anomalous dispersion. This can only

happen if the pulse shape is near parabolic, as was predicted and demonstrated

in [33]. One consequence of this parabolic pulse is its self-similar evolution. This

means that attempts to model the self-similar solution must take into account

the evolution itself. However, because the amplitude balances are the same as in

the DS pulse and because the total GVD balances with the nonlinear phase, we

can expect master-equation treatments with averages parameters to be useful in

modeling self-similar lasers.

phaseam
p
li
tu
d
e

normal GVD+

nonlinear phase

evolu!on

anomalous GVD

saturable
absorber

spectral filter

Figure 3.11: Qualitative illustration of the amplitude and phase balances in a
passive self-similar laser.

3.3.2 Stretched dissipative soliton fiber lasers

Perhaps surprisingly, another set of solutions exists in the dispersion-mapped cav-

ity designed to support self-similar pulses in the passive fiber [44]. The solution

corresponding to the dashed line in Figure 3.7 exhibits the features of the curi-

ous regime reported in Refs. [34] and [42]. The pulse duration decreases in the
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normal-dispersion section and increases in the dispersive delay. The evolution in

each segment is mostly monotonic as in a self-similar laser, but the variation of

the pulse duration is reversed somehow. The pulses depend strongly on dissipative

effects such as the gain filter and the saturable absorber. The pulses are predom-

inantly down-chirped and can reach the transform limit in the first part of the

grating section. Thus, much less dispersion is required to dechirp these pulses

outside the cavity than is needed for similaritons. In order to isolate this regime

from self-similar propagation, we searched for a parameter which would ensure its

existence. We found that the nonlinearity in the first segment of SMF can be

varied to determine whether this or the passive self-similar mode exists. We find

that this mode will always converge instead of a self-similar pulse in the limit of

this nonlinearity becoming small.

We isolate this new regime and exaggerate some of its key features by setting

the nonlinearity in the first fiber to zero and by varying the pulse energy (details

are in Appendix A.2.2). Two transform-limited pulse duration minima occur in

the evolution. At high energy, the minima occur near each other, at the transi-

tion from normal to anomalous dispersion. With decreasing energy, the minima

shift to the center of the dispersive sections (Figure 3.12(a)). The spectrum can

be cut by the gain filter, and grows back in the nonlinear section of fiber after

the gain (Figure 3.12(b)). A crucial point is that the function of the anomalous

dispersion and the first section of fiber can be viewed as simply increasing the

magnitude of the negative chirp; these sections can be removed and the solution

in the gain and the SMF will remain nearly identical to a dissipative soliton in an

all-normal-dispersion laser [5]. In this simulation, this statement is exact because

the dispersions of the first SMF and the dispersive delay are equal and opposite.

This regime therefore is an extension of normal dispersion mode-locking toward
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(a) (b)

(c) (d)

Figure 3.12: Evolution of (a) pulse duration and (b) spectral bandwidth, and
output (c) spectra and (d) pulses of an SDS laser for 1 nJ (dotted line), 4 nJ
(dashed line), and 12 nJ (solid line) intra-cavity pulse energies.

zero net cavity dispersion. The pulses are dissipative solitons with an evolution de-

fined by the additional dispersion map. Thus, it seems most informative to refer to

these pulses as stretched dissipative solitons (SDS). Ilday et al. had dubbed these

pulses “wave-breaking-free” to refer to a consequence of their evolution, before the

evolution itself was understood [42]. This was a generic label, as self-similar pulses

and dissipative solitons also avoid wave-breaking at large nonlinear phase shifts.

The analysis based on the CQGLE of Refs. [5] and [18] can be used to understand

this regime. For example, higher-energy solutions have less chirp, and push the

point in the gratings where the pulse is transform-limited closer to the output of

the laser. Also, as in the all-normal-dispersion case, the spectrum has steep sides

and can have peaks on the edges (Figure 3.12(c)). The SDS regime allows for
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large pulse energy as is typical for normal dispersion systems; the largest energy

shown here is 12 nJ (Figure 3.12 solid line). In addition, the pulse duration can

be very short (e.g., 45 fs for the 12 nJ case) because of the low values of net GVD

possible [19], hence the > 100 kW peak powers seen in Ref. [34]. The temporal

breathing in this regime can also be very large; a breathing ratio of ∼ 30 has been

observed experimentally and in the simulated 12-nJ case the breathing ratio is

∼ 200.

3.4 Amplifier-similariton fiber lasers

Recently, a fourth normal dispersion mode-locking mechanism was introduced in

which parabolic amplifier similaritons are stabilized in an oscillator [38–41]. Spec-

tral filtering is found to be critical to stabilizing the amplifier similaritons in the

cavity. The pulse undergoes large (20 times) spectral breathing as it traverses the

Local 

attraction:

gain fiber

Feedback: 

remaining cavity

Asymptotic 

solution

Figure 3.13: Illustration of the local attraction in an amplifier similariton fiber
laser.
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cavity. Unlike the other three regimes, the amplifier similariton fiber laser relies on

a local nonlinear attraction to stabilize the pulse (Figure 3.13). An arbitrary pulse

inserted into a gain fiber is nonlinearly attracted to an asymptotically-evolving

parabolic pulse. The output pulse parameters are entirely determined by the en-

ergy of the input pulse and the parameters of the fiber. The challenge is for the

pulse to reach this solution in a fiber length compatible with efficient laser design,

and filtering can facilitate this. Shorter, nearly-transform-limited pulses can reach

the amplifier similariton solution in shorter propagation lengths [43]. Oktem et al.

built a laser in which the parabolic pulse evolves into a soliton in an anomalous

gain fiber:

+GVD & NL
saturable

absorber
spectral filter

output

Figure 3.14: Cartoon schematic of an amplifier similariton fiber laser.

dispersion fiber after the gain, which allows for a short transform-limited pulse to

return to the input of the gain fiber [38]. Renninger et al. showed that a strong

spectral filter after the gain fiber can stabilize amplifier similaritons with feed-

back, so an anomalous-dispersion segment is not needed [39] (Figure 3.14). For

fixed chirp, a pulse with a narrower spectrum is shorter and close enough to the

transform limit to provide a self-consistent cavity. The resultant pulse after the

gain segment is highly parabolic and the spectral profile is distinguished from that

in other mode-locking regimes (Figure 3.15). Aguergaray et al. built a Raman

oscillator with kilometers of gain fiber, which provides enough propagation length

for the asymptotic solution to be achieved [40]. Demonstration of stable propaga-

tion of amplifier similaritons in three diverse cavities illustrates the robustness of

this regime.
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(a) (b)

Figure 3.15: (a) Cross-correlation (C.C.) of the pulse (with dotted parabolic fit)
and (b) spectrum after propagation through the gain fiber.

The differences between this regime and the others mentioned are related to the

fact that the pulse relies on a local attraction in the gain fiber. As one consequence,

the behavior and performance of the laser are decoupled from the average cavity

parameters. In Ref. [39], the pulses are much shorter than would be expected from

a master mode-locking model with the average cavity parameters. As a result, the

laser should offer flexibility in design for specific performance, and future work will

address this point experimentally.

3.5 Discussion of results

In this section, we will compare and contrast the four operating regimes (Table

3.1). High-performance short-pulse fiber lasers rely on an exact balance of large

accumulated nonlinear phase shifts during one cycle around the cavity. In the

normal-dispersion regime, dissipation plays a crucial role in establishing this bal-

ance. Dissipative effects such as spectral filtering and saturable absorption enable

the stabilization of a chirped pulse in the presence of nonlinearity and normal

dispersion. Dissipative solitons, SDS and passive self-similar lasers rely on this
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DS SDS Passive SS Active SS

Average cavity parameters 3 3 3

Dispersion map 3 3

Self-similar/parabolic 3 3

Table 3.1: Comparison of important features: DS: dissipative soliton, SDS:
stretched dissipative soliton, SS: self-similar.

complete balance. Because the effects are important through the traversal of the

entire cavity, the average cavity parameters determine the pulse parameters. Mas-

ter mode-locking models ( [4,5]) are useful for determining pulse properties for these

regimes. Amplifier similariton lasers, however, rely on a local nonlinear attractor

and therefore will be less amenable to such analyses. This opens up interesting

possibilities that may go against conventional laser wisdom, such as operation at

net zero dispersion or ultrashort pulse durations at large normal dispersion.

The SDS and passive self-similar regime require dispersion-managed cavities.

From a physical perspective, this means that the mode-locking mechanism is more

complicated, as the evolution of the pulse is important. As an example, math-

ematically these two regimes are bistable in the same cavity, which leads to a

wealth of interesting nonlinear dynamical behavior. From a practical perspective

a dispersion-managed cavity allows for a precise tunability of the net dispersion

at the cost of some complexity and loss in the design. However, tuning the net

dispersion can allow the generation of dissipative solitons with shorter duration

than can be reached in all-normal-dispersion cavities.

Dispersion managed solitons can also exist in a dispersion managed cavity. In

fact, the temporal evolution of these pulses resembles that in Figure 3.12(a) (dotted

line), but the mode-locking mechanism is distinctly different. Dispersion-managed
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solitons exist from net anomalous dispersion to slightly normal dispersion when

there are minimal dissipative perturbations. In the normal dispersion regime,

particularly near zero dispersion, dissipative effects such as gain filtering play a

major role. There is extensive literature on dispersion-managed solitons, so we

have restricted our discussion to high-energy mode-locking regimes, which exploit

(and in fact depend on) dissipative mechanisms.

In the initial development of dissipative soliton lasers, the acronym ANDi fiber

laser, for all-normal dispersion fiber laser, was used. This name was given in

reference to the design of the system more than to the pulse-shaping mechanisms.

Because amplifier similariton fiber lasers can also exist in an all-normal dispersion

cavity, we refer instead to the relevant physical mechanisms: dissipative soliton

mode-locking or amplifier similariton mode-locking.

Both active and passive self-similar pulses have been stabilized in fiber lasers.

In the passive case, this coincides with temporal breathing, which leads to longer

durations and large pulse energy. In addition, a parabolic pulse and spectrum can

be attractive for applications owing to good pulse quality. In the active case, the

nonlinear attraction of the gain fiber is responsible for the mode-locking of the

laser. In this case, dissipation plays a supporting role by facilitating creation of a

self-consistent cavity.

Pulse quality is a critical feature for applications of mode-locked lasers. With

proper design, the pulses from almost all of the regimes can be compressed to within

5% of the transform limit. The exception is the giant-chirp oscillator ( [20]). This

is a property of the solution of the equation that models the cavity with very large

group-velocity dispersion. Pulses from a giant-chirp oscillator can be dechirped

to ∼ 2 times the transform-limit. Another issue that affects pulse quality is the
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spectral shape of the output of most normal-dispersion lasers. The square, or steep-

sided, spectral shape has a sinc function Fourier transform. As a consequence, the

transform-limited pulses have low-intensity wings in their temporal profile. These

typically contain ∼ 5% of the pulse energy. The exception is the amplifier simi-

lariton regime, where the spectra approach a parabolic form that yields dechirped

pulses with less energy in the wings.

For many applications, the square or peaked spectral shapes produced by

normal-dispersion lasers will be perfectly acceptable. This is the case in non-

linear microscopy, e.g., where the peak power is the most-important parameter.

However, a smoother spectral shape may be needed for other applications. In this

case, a smoother spectrum can be obtained by taking the output after the filter.

The structured spectra of normal-dispersion lasers would appear to be a concern

for subsequent amplification. In chirped-pulse amplification, spectral modulations

can grow as nonlinear phase is accumulated. Ilday et al. have shown that the spec-

tral structure can be smoothed by the amplification process [45]. Finally, nonlinear

and dispersive propagation of pulses from normal-dispersion lasers is quantitatively

different from the propagation of Gaussian pulses. One must account for this is

the design of a pulse compressor, e.g..

For the shortest pulses, for the mode-locking mechanisms where the average

cavity parameters are important, the laser must be operated as close as possible

to net zero dispersion. Consequently, the passive self-similar and SDS regimes

are preferable. For short-pulse operation in the amplifier similariton laser, the

bandwidth is only limited by the gain bandwidth. Initial demonstrations already

include promising results (∼ 55 fs). For energy, however, little is known about the

preferred operation regime. To date, dissipative soliton mode-locking achieves the
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highest performances with > 100-nJ pulse energies.

3.6 Conclusions

A numerical investigation into fiber lasers mode-locked with net normal dispersion

reveals several distinct regimes, including active and passive similariton mode-

locking, along with dissipative and stretched-dissipative soliton mode-locking.

Each regime balances the linear and nonlinear phase accumulations as well as

the amplitude modulations. Wave-breaking is avoided with a unique combination

of normal dispersion and dissipation in each regime. A dissipative soliton is a

chirped pulse that can balance nonlinear phases by spectral filtering and saturable

absorption. A stretched dissipative soliton provides the same balance but with

additional temporal evolution defined by a linear dispersion map. Remarkably, a

passive similariton solution can exist in a stretched dissipative soliton cavity, but

with a very different evolution. In this regime, the spectral filer and saturable

absorber still play important roles in creating the pulse, but anomalous dispersion

also becomes important. A parabolic pulse evolving self-similarly linearizes the

nonlinear phase in the normal dispersion fiber, which is compensated by a disper-

sion delay. Because of the clear similarities to dissipative soliton mode-locking,

master equation models can be used to model passive similariton lasers, but for

a complete understanding the evolution must also be taken into account. Finally,

the amplifier similariton regime is distinguished from the other three regimes be-

cause it relies on local nonlinear attraction in the gain fiber of the laser. As a

consequence, the behavior and performance is decoupled from the average cavity

parameters, and this will allow flexibility in design for specific performance.
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CHAPTER 4

AMPLIFIER SIMILARITON FIBER LASERS

4.1 Initial demonstration1

4.1.1 Introduction

Short-pulse fiber lasers based on soliton formation in anomalous-dispersion cav-

ities [2], dispersion-managed solitons in cavities with a dispersion map [3], and

all-normal-dispersion (ANDi) cavities [4–6] have been demonstrated. The latter

system supports dissipative solitons in the cavity [7], and allows performance com-

parable to solid-state lasers [8] (also see chapter 2). In addition, ANDi designs

allow for simple instruments at a lasing wavelength of 1 µm, an ideal wavelength

for optical bandwidth and efficiency.

Self-similar pulses (“similaritons”) are parabolic pulses that convert nonlinear

phase into a linear frequency chirp that can be compensated with standard disper-

sive devices. Specifically, similaritons are solutions of the nonlinear Schrodinger

equation with gain,

∂A

∂z
=

g

2
A− i

β2

2

∂2A

∂t2
+ iγ(|A|2)A, (4.1)

with the form

A(z, t) = A0(z)
√

1− (t/t0(z))2ei(a(z)−bt2) (4.2)

for t ≤ t0(z). Similaritons were first demonstrated theoretically and experimentally

in single-pass fiber amplifiers [9–11], and they continue to attract much attention

1The majority of this section is published in Ref. [1].
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[12]. Self-similar evolution of a pulse in the passive fiber of a laser has been

observed, and leads to major performance increases in pulse energy over previously-

studied evolutions [13].

Solitons in passive fiber and self-similar pulses in fiber amplifiers are the most

well-known classes of nonlinear attractors for pulse propagation in optical fiber, so

they take on major fundamental importance. Solitons are static solutions of the

nonlinear Schrodinger equation, and are therefore naturally amenable to systems

with feedback. The demonstration of a laser that supports similaritons in its ampli-

fier would be remarkable as a feedback system with a local nonlinear attractor that

is not a static solution. The spectrum of the self-similar pulse broadens with prop-

agation, so an immediate challenge is the need to compensate this in a laser cavity.

A design with a long normal-dispersion gain fiber, a filter, and a linear anomalous-

dispersion segment was proposed [14], but has not been realized experimentally.

Oktem et al. reported a major step forward in this context: a laser with simi-

lariton evolution in the amplifier and soliton evolution in an anomalous-dispersion

segment [15]. The soliton formation is thought to stabilize the similariton solution.

Thus, self-similar pulse evolution has been observed only in lasers with dispersion

maps. An unanswered question is whether amplifier similaritons can form in an

ANDi laser, where satisfying the periodic boundary condition will be much more

challenging. Such a pulse evolution would isolate the amplifier similariton in a

system with feedback. Dissipation presumably would be a crucial process in that

evolution.

In this section, we demonstrate self-similar pulse formation in the amplifier of an

ANDi laser. Theory and experiments show that a range of inputs to the amplifier

evolve to the self-similar solution, which verifies the existence of the nonlinear
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attractor in that segment of the oscillator. This local nonlinear attractor suppresses

effects from the average cavity parameters that are unavoidable in lasers with

dispersion maps. The solutions exhibit large (up to 20 times) spectral breathing,

but the pulse chirp is always less than expected from the cavity dispersion. This

new pulse evolution can be obtained over a broad range of parameters, which

allows tuning the pulse duration, bandwidth, and chirp. For example, amplifier

similaritons underlie the generation of the shortest parabolic pulses to date from

a laser, in addition to the shortest pulses from any ANDi laser. The ability to

generate high-energy chirped parabolic pulses or ultrashort pulses from a simple

device will be attractive for applications.

4.1.2 Numerical simulations

Numerical modeling illustrates the main features of a laser that can support am-

plifier similaritons, indicated schematically at the top of Figure 4.1(a). A gain

fiber with normal group-velocity dispersion (GVD) dominates the parabolic pulse

shaping. This is followed by a saturable absorber, which is assumed to be conver-

sion of nonlinear polarization evolution (NPE) into amplitude modulation in the

standard way. The cavity is a ring: after the filter, the pulse returns to the gain

fiber. Propagation in the gain fiber, neglecting modal birefringence, is modeled

with the coupled equations for the orthogonal electric field polarization states, Ax

and Ay:
∂Ax

∂z
=

g

2
Ax − i

β2

2

∂2Ax

∂t2
+ iγ(|Ax|2 +

2

3
|Ay|2)Ax

∂Ay

∂z
=

g

2
Ay − i

β2

2

∂2Ay

∂t2
+ iγ(|Ay|2 +

2

3
|Ax|2)Ay,

(4.3)

where z is the propagation coordinate, t is the local time, β2 = 23 fs2/mm is

the group-velocity dispersion, and γ = 0.0044 (W m)−1 is the cubic self-focusing

114



nonlinear coefficient for the fiber. The linear gain coefficient is defined as:

g =
g0

1 +
∫

[|Ax|2+|Ay|2]dt

Esat

, (4.4)

where g0 = 6.9 is the small-signal gain corresponding to a ∼30 dB fiber ampli-

fier, Esat = 170 pJ is the saturation energy, and the integral is calculated before

propagation through the 2-m gain fiber. The polarization-dependent elements are

treated with a standard Jones matrix formalism in the (x,y) basis. The NPE is

implemented with a half-wave and a quarter-wave plate, a polarizer, and another

quarter-wave plate, with orientations (with respect to the x-axis) θq1 = 2.21 rads,

θh = 2.28 rads, θpol = π/2, and θq2 = 0.59 rads, respectively. The filter is a Gaus-

sian transfer function with 4-nm full-width at half-maximum (FWHM) bandwidth.

Finally, as in a practical oscillator a linear loss of 70% is imposed after the filter.

The initial field is white noise, and the model is solved with a standard symmetric

split-step algorithm.

A typical stable evolution is shown in Figure 4.1(a). The two polarization

modes evolve almost identically, so the sums of the temporal and spectral intensi-

ties are plotted. The pulse duration and bandwidth increase in the gain fiber as

the pulse evolves toward the asymptotic attracting solution in the fiber. The filter

and saturable absorber reverse these changes. The filter provides the dominant

mechanism for seeding the self-similar evolution in the amplifier. This implies that

only the initial pulse profile is important, and no additional nonlinear attraction

is required, in contrast to soliton evolution in the results of Oktem et al.. Dissi-

pative solitons and dispersion-managed parabolic pulses [13] have nearly constant

bandwidth, and the pulse duration increases due to the accumulation of linear

phase. In contrast, the amplifier similariton increases in duration as a consequence

of its increase in bandwidth, which is an intrinsic property of the exact asymp-

totic solution [9]. A key feature of amplifier similaritons is that the pulses evolve
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Gain fiber NPE Filter

(a) (b)

Figure 4.1: (a) Evolution of the FWHM pulse duration (filled) and spectral band-
width (open) in the cavity. The components of the laser are shown above the
graphs. (b) The output pulse at the end of the gain fiber (solid) and a parabolic
pulse with the same energy and peak power (dotted). Inset: spectrum. The or-
thogonally polarized pulse and spectrum (not shown) are essentially identical.

toward a parabolic asymptotic solution: each polarization component is parabolic

at the end of the gain fiber (Figure 4.1(b)). The associated spectra exhibit some

structure, as expected for a parabola with finite chirp (Figure 4.1(b) inset). No

stable solution was found with a single-field equation and a saturable absorber

with transmission that increases monotonically with intensity; the coupling of the

polarizations evidently provides some stabilizing function.

The pulse evolution can be quantified with the metric, M2 =
∫

[|u|2 −
|p|2]2dt/

∫ |u|4dt, where u is the pulse being evaluated and p is a parabola with

the same energy and peak power. In the gain fiber, the pulse evolves from a Gaus-

sian profile (M=0.14) after the spectral filter to a parabola (Figure 4.2(a)). To

verify that the pulse is converging to a parabola, the pulse at the end of the 2-m

gain fiber is taken as the initial condition for propagation through an additional 3 m

of identical gain fiber, and the pulse remains parabolic (Figure 4.2(a)). To further

confirm that the pulse is converging to the exact asymptotic solution demonstrated

in Refs. [9–11], p from the M2 metric is replaced with the pulse representing the
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(a) (b)

Figure 4.2: Evolution of the (a) M parameter comparing the pulse to a parabola
and the (b) M parameter comparing the pulse to the exact solution of Ref. [9]
in the oscillator. An additional 3 m of propagation was added to each plot to
emphasize convergence.

asymptotic solution for this fiber. Indeed the pulse evolves toward the attractor in

the gain fiber (Figure 4.2(b)). The resulting pulses exhibit a parabolic shape and

large spectral breathing as is expected from the parabolic attractor. The numerical

simulations clearly show the formation of the amplifier similariton inside the laser.

4.1.3 Experimental results

We designed a Yb fiber laser with parameters similar to those of the simulations.

The schematic is identical to dissipative soliton lasers ( [7]) with the exception of a

diffraction grating (300 lines per millimeter) placed before a collimator, which re-

places the birefringent plate as a spectral filter. The wavelength-dependent diffrac-

tion along with the Gaussian dependence of the fiber acceptance angle yield a 4-nm

Gaussian spectral filter when the collimator is 11 cm from the grating. Along with

the three wave-plates required for NPE, we add a half-wave plate before the grat-

ing to optimize the transmission. The zeroth-order grating reflection is used as a

secondary output for analysis. The Yb-doped double-clad gain fiber is 1.8 m long
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and is pumped with a multi-mode pump diode. 28 cm of single-mode fiber (a colli-

mator pigtail) precedes the gain fiber and a pump/signal combiner and collimator

follow it, which together add 128 cm of SMF. All fibers have normal GVD.

Self-starting mode-locking is achieved by adjustment of the wave plates. The

chirped pulse from the grating reflection is measured directly by cross-correlation

with the dechirped pulse from the NPE output, which is 60 times shorter than the

chirped pulse (Figure 4.3(a)). The pulse is parabolic and the spectrum (Figure

4.3(c)) agrees well with the theoretical prediction for an amplifier similariton (Fig-

ure 4.1(b), inset). The shape of the spectrum is an immediate indication that this

is a new regime of modelocking, as it lacks the characteristic steep edges of dissi-

pative solitons in normal-dispersion lasers [5,7]. The spectral bandwidth breathes

by a factor of ∼10 as the pulse traverses the cavity. The pulse from the NPE

output (Figure 4.3(d)) can be dechirped to a duration of 65 fs (Figure 4.3(b)),

with minimal secondary structure. The pulse chirp (0.05 ps2), inferred from the

dispersion required to dechirp it to the transform limit, is less than the GVD of

the cavity (0.08 ps2). This is another feature of this regime, as prior ANDi lasers

have generated pulses with chirp comparable to, or much greater than, the cavity

GVD.

4.1.4 Discussion and extensions

The narrow filter is crucial for the formation of similaritons in the amplifier. The

challenge is for the pulse to reach the asymptotic solution in a fiber length that is

compatible with efficient laser design. We offer the following argument: for fixed

chirp, a pulse with a narrower spectrum is shorter and closer to the transform limit;

such a pulse can reach the single-pass amplifier similariton solution in a shorter
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(a) (b)

(c) (d)

Figure 4.3: Experimental (a) cross-correlation of the pulse from the grating reflec-
tion (solid) with a parabolic (dotted) and sech2 (dashed) fit; (b) interferometric
auto-correlation of the dechirped pulse from the NPE output; and spectra from
the (c) grating reflection and (d) NPE output.

segment of gain. A pulse propagating in normal-dispersion gain fiber will always

be attracted to the similariton solution, but if the pulse is too long, the effect is

negligible and the resulting pulse will not be parabolic.

In contrast to prior pulsed lasers, the local attraction of the pulse to the am-

plifier similariton solution decouples the output pulse from other elements of the

cavity. This property allows a variety of pulse evolutions and performance param-

eters. For example, with a narrower (2 nm) spectral filter, the pulse still evolves to

an amplifier similariton with large bandwidth. The resulting solution has a very

large spectral breathing ratio (∼20), and yields 5-nJ pulses that dechirp to 80 fs

(Figure 4.4(a,b)). A well-known limitation to similaritons in fiber amplifiers is

119



(a) (b)

(c) (d)

(e) (f )

Figure 4.4: Output spectrum and dechirped auto-correlation for modes with (a,b)
large spectral breathing, (c,d) short pulse duration, and (e,f) long cavities.

the gain bandwidth; as the spectrum approaches the gain bandwidth the chirp is

no longer monotonic, which disrupts the self-similar evolution. With larger pump

powers the spectral bandwidth increases, but the pulse quality is degraded. For

example, with a 4-nm filter a 3-nJ pulse dechirps to 55 fs (Figure 4.4(c,d)), a

remarkably short pulse considering the large normal GVD of the cavity. Finally,
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amplifier similariton mode-locking is possible even with the addition of long lengths

of fiber before the gain. For example, with 63 m of fiber and a 2-nm spectral filter,

a 15-nJ pulse that can be dechirped to 360 fs is generated (Figure 4.4(e,f)). These

results extend the performance of recently-developed giant-chirp oscillators [16] to

shorter pulses, which is needed.

The phenomena described here can be distinguished clearly from other pulse-

propagation regimes. The pulses in Ref. [13] are self-similar in the passive fiber.

The laser requires a dispersion-managed cavity and spectral filtering is avoided

as much as possible. The spectrum of the passive similariton has characteristic

steep sides, with minimal breathing. The passive similariton is not a nonlinear

attractor, so there is no local attractor and the average cavity parameters influ-

ence the pulse evolution. Finally, parabolic self-similar mode-locking as in Ref. [13]

was found to exist for a narrow region of parameter space [17]. All of these fea-

tures contrast with the observations presented above for the amplifier similariton

laser. Of course, dissipative solitons can be generated in a laser with only nor-

mal dispersion and a filter, as is the case here. However, dissipative solitons are

characterized by a small spectral breathing ratio (<5), and the pulses are not

parabolic [7]. Furthermore, the multi-pulsing threshold decreases with decreasing

filter bandwidth, which severely restricts the stable mode-locking states that can

be accessed with a narrow filter. The amplifier similariton regime allows much

higher pulse energies and much shorter pulse durations to be obtained with the

narrow filter. Giant-chirp oscillators are possible based on dissipative solitons [16].

These employ larger-bandwidth filters, so spectral breathing is small. The pulses

exhibit the steep-sided spectra that are characteristic of dissipative solitons, and

acquire frequency chirps that can be many times larger than expected from the

cavity dispersion, again all in contrast to the long-cavity results of Figure 4.4(e,f)
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above.

Finally, the pulses in Ref. [15] are characterized by soliton evolution in an

anomalous dispersion section of fiber. This requires dispersion management and

fiber with anomalous dispersion in the cavity, which can limit the efficiency and

simplicity of the operating regime. In contrast, similaritons in an ANDi fiber laser

are stabilized with only a filter, which allows for a simple design with minimal

components and without restriction on the lasing wavelength.

4.1.5 Conclusions

In summary, we have demonstrated self-similar pulse propagation in the gain seg-

ment of a normal-dispersion fiber laser. Strong spectral filtering is adequate to

satisfy the periodic boundary condition of the laser. Thus, the evolution is dom-

inated by the presence of the local nonlinear attractor in the cavity. This regime

offers flexibility to design for distinct performance parameters. These include the

shortest pulses generated by an ANDi laser and pulses with small and linear chirp,

both of which will be valuable for applications.

Note added. Recently, Aguergaray et al. demonstrated the evolution of an

amplifier similariton in a picosecond Raman fiber oscillator [18]. Stable operation

in a system with Raman gain and kilometers of fiber illustrates that amplifier

similariton mode-locking is robust for a large range of parameter space.

Portions of this work were supported by the National Science Foundation

(Grant No. ECS-0901323) and the National Institutes of Health (Grant No.

EB002019). The authors acknowledge useful discussions with F. O. Ilday.
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4.2 Dispersion-mapped amplifier similariton fiber lasers2

4.2.1 Introduction

Major advances in fiber laser research are driven by the need to compensate for

optical nonlinearities imposed on the pulse by the small confinement area of single-

mode optical fiber [3, 4, 7, 13]. To date, dissipative soliton systems lead in perfor-

mance, with 31-nJ, 80-fs pulses from a single-mode fiber laser [8], and 534-nJ,

100-fs pulses from a photonic-crystal fiber laser that sacrifices some of the practi-

cal advantages of single-mode fiber systems [20].

In parallel with high-performance oscillator design, new amplifier pulse propa-

gation physics was developed in the form of the self-similar propagation of parabolic

pulses. Building on previous work on parabolic pulses [21,22], a team from Auck-

land showed theoretically that self-similar pulses (similaritons) can occur in a fiber

with gain, and Fermann et al. verified this experimentally [9–11, 23]. Finot et al.

studied the asymptotic characteristics of parabolic pulses [24], verified the robust-

ness of the attractor to large input fluctuations [25], and also studied the extension

of this regime to Raman amplifiers [26]. The limits of parabolic amplification have

been addressed theoretically and have been shown to be ultimately limited by

gain bandwidth, higher-order dispersion, and stimulated Raman scattering [27].

Self-similar parabolic pulses were also later shown to be an asymptotic solution in

dispersion-decreasing passive fibers [28,29]. As a practical advancement, this new

wave-form has been used to achieve high performance in amplifier systems [30–32].

Recently, self-similar evolution of the pulse in the gain segment of a fiber laser

2The majority of this section is published in Ref. [19].
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was demonstrated in a laser with an anomalous-dispersion segment [15], in an all-

normal-dispersion fiber laser [1], and in a Raman fiber laser [18]. In Ref. [1] it

was shown that a narrow-band spectral filter is sufficient to stabilize the evolution,

which yields high-energy and ultra-short pulses at large normal dispersion (chapter

4). In parallel with the experimental developments, Bale and Wabnitz showed that

the pulse evolution can be completely characterized by solutions to the ordinary

differential equations for the pulse characteristics in the fiber, along with scalar

transfer functions for the spectral filter [33]. By scaling the fiber core size, 10-nJ

and 42-fs pulses were generated following the design of Ref. [1], and these achieve a

peak power of 250 kW [34]. With the large peak power that can be obtained from

a rigorously single-mode fiber laser, amplifier similariton mode-locking promises to

be very useful in applications.

In this section, we report an investigation of an amplifier similariton fiber laser

with a dispersion map. Despite large changes in both the magnitude and sign of the

total cavity group-velocity dispersion (GVD), the pulse parameters remain nearly

constant. A narrow-band spectral filter is critical to facilitate the evolution toward

the amplifier similariton solution. Strong nonlinear attraction to this asymptotic

solution in the amplifier section of the laser underlies the pulse’s independence

from the global cavity parameters. The freedom from global parameters allows for

several scientifically-significant cavity designs which will, in addition, be important

for applications:

• Large anomalous GVD: The dispersion-mapped amplifier similariton

(DMAS) laser is a new mode of operation at large anomalous net GVD, which

complements the well-known soliton operation. As a practical consideration,

the DMAS laser generates shorter pulses with higher energy than soliton op-
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eration at large anomalous dispersion. As a consequence, the DMAS laser

can eliminate length restrictions when designing oscillators at 1550-nm laser

wavelength, e.g.

• Large normal dispersion: With appropriately-tuned net positive GVD, a

DMAS laser can be designed to emit transform-limited pulses. The DMAS

laser joins soliton lasers as sources of transform-limited pulses. In the DMAS

laser, this occurs at the opposite sign of net GVD, and shorter pulses with

greater energy are produced.

• Net zero GVD: The master equation, which governs prior mode-locked lasers,

predicts an instability near zero GVD when the self-phase modulation ex-

ceeds the self-amplitude modulation, as is commonly the case. The DMAS

laser, which is not governed by an average-parameter model, does not suffer

from the same instabilities, and can be operated at net zero GVD. Because

timing jitter is expected to be minimal at net zero GVD, the DMAS laser

may be a route to low-noise frequency combs.

All modes of operation produce sub-100 fs pulses with nanojoule energies and

should readily scale (as in Ref. [34]) to greater than 200-kW peak powers, even

with single-mode fibers.

4.2.2 Numerical simulations

To assess the viability of a DMAS laser, numerical simulations were performed.

The pulse propagation within a general fiber is modeled with the following nonlin-

ear Schrödinger equation with gain:

∂A(z, τ)

∂z
+ i

β2

2

∂2A(z, τ)

∂τ 2
= iγ|A(z, τ)|2A(z, τ) + g(Epulse)A(z, τ). (4.5)
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Figure 4.5: Schematic of the dispersion-mapped amplifier similariton fiber laser:
QWP, quarter-wave plate; HWP, half-wave plate; DDL, dispersive delay line
(diffraction grating pair).

A is the electric field envelope, τ is the local time, z is the propagation coordinate,

β2 represents the GVD, and γ represents the Kerr self-focusing nonlinearity. A

35-cm segment of single-mode fiber precedes 200 cm of Yb-doped gain fiber, and a

150-cm segment follows it (Figure 4.5), where all fibers have β2 = 230 fs2/cm and

γ = 0.0047 (W m)−1. In the Yb-doped gain fiber there is an additional saturating

gain with g = go/(1 + Epulse/Esat), where go corresponds to 30 dB of small-signal

gain, Epulse =
∫ TR/2

−TR/2
|A|2dt, where TR is the cavity round trip time and Esat = 240

pJ. The fiber is followed by a monotonic saturable absorber with transmittance T =

1−lo/[1+P (τ)/Psat] where lo=1.0 is the unsaturated loss, P (τ) is the instantaneous

pulse power and Psat = 4.0 kW is the saturation power. Increasing the saturable

absorber modulation depth from 70% to 100% allows for the stabilization of pulses

numerically without resorting to a full model incorporating nonlinear polarization

evolution, as in Ref. [1]. Thus, the saturable absorber is important in this system

for stabilizing the pulses from noise. The saturable absorber is followed by a

linear segment of anomalous dispersion which is varied to set the net GVD of

the cavity. The gain is assumed to have a Gaussian spectral profile with a 40-nm

bandwidth, the output coupling is 60%, and a Gaussian filter with 4-nm bandwidth
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is placed after the dispersive delay. The governing equations are solved with a

standard symmetric split-step propagation algorithm [35] (the linear terms are

solved exactly in the Fourier domain and the nonlinear terms are solved with a

fourth-order Runge-Kutta algorithm) and are run until the energy converges to a

constant value.

The net GVD was varied from large normal (no anomalous dispersion section)

to equally-large anomalous GVD and results for selected values are presented (Fig-

ure 4.6). All of the simulated output pulses (output 1 in Figure 4.5) have ∼ 1-nJ
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0.05

0.10

0.15

0.04 ps2

Position in cavity (arb. units)
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Figure 4.6: Simulated evolution of the pulse chirp for four different values of net
cavity GVD: SA, saturable absorber; DDL, dispersive delay line.

pulse energy, ∼ 0.05-ps2 chirp, and 50-100 fs dechirped pulse duration, which is

a clear indication that the dispersive delay has little effect on the similariton for-

mation in the gain fiber. Mode-locking mechanisms are primarily distinguished
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by the pulse evolution through the cavity, and the parameter that most clearly

illustrates the effects of the dispersion map is the pulse chirp (i.e., the quadratic

spectral phase). In the cavity with large normal GVD, starting after the gain,

the chirp increases in the normal dispersion fiber sections and then is pulled back

toward ∼ 0.05 ps2 in the gain fiber (Figure 4.6). For the other dispersion values,

starting after the gain, the chirp increases slightly in the fiber section, decreases in

the dispersive delay, slightly increases again in the next fiber section, and is then

pulled back toward ∼ 0.05 ps2. The clear and powerful nature of the nonlinear

attractor responsible for DMAS mode-locking is illustrated completely by the evo-

lution of the chirp in the gain section (Figure 4.6). Regardless of how much GVD

is necessary to produce a pulse with ∼ 0.05 ps2 of chirp, the pulse nonlinearly

grows the appropriate phase as it is attracted to the self-similar solution in the

gain, as is most evident from the large anomalous dispersion (−0.09 ps2) case. We

note that the pulse chirp can be tuned continuously from positive to negative by

tuning the GVD of the cavity; the 0.04-ps2 result is included because it yields a

transform-limited output pulse.

4.2.3 Experimental results

The DMAS oscillator is designed and built as in Ref. [1], but with the addition of

a grating pair for the dispersive delay line (Figure 4.5). As in Ref. [1], a diffrac-

tion grating (300 lines per millimeter) along with the Gaussian dependence of the

fiber collimator acceptance angle yield a 4-nm Gaussian spectral filter. The power,

spectrum, and interferometric autocorrelation of pulses from output 1 (Figure 4.5)

are measured after dechirping the pulses with a grating pair. The pulse train is

measured with a 30-GHz detector to ensure that only one pulse is in the cavity
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at a time. Mode-locking exists at many settings of the wave-plates, and is robust

and self-starting at all values of the net GVD. In addition, the net GVD can be

tuned continuously through zero without loss of mode-locking. At large anoma-

lous net GVD, a typical example has 0.7-nJ output energy and 83-fs dechirped

duration with 0.06-ps2 chirp (Figure 4.7). Although the cavity has large anoma-

(a) (b)

Figure 4.7: (a) Output spectrum and (b) dechirped autocorrelation of the pulses
from a laser with large net anomalous dispersion. Inset: output spectrum with a
logarithmic scale.

lous dispersion, there are no spectral sidebands (Figure 4.7 inset), which clearly

distinguishes these pulses from the only other known mode-locking regime with

this net GVD, the soliton. Other distinguishing features include the temporal and

spectral shapes, the short pulse duration (considering the high magnitude of net

GVD) and the fact that the pulse has chirp. The ability to produce short pulses at

any net dispersion can facilitate laser designs at 1550-nm, for example. Standard

single-mode fibers have anomalous dispersion, and can still be used to generate

ultrashort and high-energy pulses.

To find a transform-limited output pulse, we set the net GVD to the value

predicted by simulations (Figure 4.6) and varied the intra-cavity grating spacing

while monitoring the autocorrelation from output 2 (Figure 4.5) until the pulse

duration was minimized. A typical example, found with net GVD of 0.03 ps2,
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has 1.9-nJ pulse energy, 61-fs dechirped pulse duration, and 0.06-ps2 chirp from

output 1 (Figure 4.8(a,b)). 250-pJ and 77-fs pulses are emitted directly from

output 2 (Figure 4.8(c,d)). In this example the transform-limited output pulse

has lower energy, but this energy can be increased simply by swapping the output

coupler with the dispersive delay, and taking the transform-limited output from

the beam splitter (see Figure 4.5). It should be noted that the system is very

stable and the intra-cavity grating separation can be varied smoothly without loss

of mode-locking.

(a) (b) (d)(c)

Figure 4.8: (a) Output spectrum and (b) dechirped autocorrelation of the pulses
from output 1 and (c) output spectrum and (d) direct autocorrelation from output
2 from a laser operating at net dispersion of 0.03 ps2.

Recent work shows a large reduction in the free-running carrier-envelope offset-

frequency linewidth, and frequency noise power spectral density, of a fiber laser

operating near zero GVD [36]. These results motivate the design of new fiber lasers

that can be mode-locked with net zero GVD. When tuned to zero net GVD, the

DMAS laser emits 0.8-nJ pulses with 67-fs dechirped duration and 0.06-ps2 chirp

(Figure 4.9). We note that the main features (bandwidth, chirp, spectral shape,

and energy) of the three operating regimes are similar. With further tuning of the

wave-plates and the pump power aimed at optimizing performance, 3.5-nJ pulses

with 56-fs pulse duration can be achieved (data not shown).
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(a) (b)

Figure 4.9: (a) Output spectrum and (b) dechirped autocorrelation of pulses from
a laser with zero net cavity dispersion.

4.2.4 Conclusion

In conclusion, amplifier similaritons are generated in a fiber laser with a dispersion

map. The pulse evolution is stabilized by a narrow-band spectral filter, which

leads to a strong nonlinear attraction in the gain segment of the fiber laser. The

output pulse parameters only change slightly as a function of the net GVD, which

demonstrates the power of the local nonlinear attraction in the gain fiber. This

freedom from global parameters allows for several practical advantages. At large

net anomalous GVD, the DMAS laser can free up length design restrictions when

designing oscillators at 1550-nm wavelengths. At large normal dispersion, the

DMAS laser can be designed with a transform-limited output. Finally, at zero

GVD, where the timing jitter is predicted to be minimal, the DMAS laser can be

useful as a route to low-noise frequency combs. All modes of operation produce

sub-100 fs pulses with nanojoule energies and should readily scale to greater than

200-kW peak power even with single-mode fiber designs.

The authors would like to thank Brandon Bale for useful discussions about

numerical simulations. Portions of this work were supported by the National Sci-
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ence Foundation (Grant No. ECS-0701680) and the National Institutes of Health

(Grant No. EB002019).

4.3 Bandwidth extended amplifier similariton mode-

locking3

From research led by Andy Chong and Hui Liu, this section describes an extension

to amplifier similariton mode-locked fiber lasers which involves the addition of a

highly-nonlinear fiber in the cavity for the creation of ultrashort pulses. Band-

widths approaching 200 nm and pulses as short as 21 fs (the shortest from a fiber

laser to date) are generated in initial experiments. This demonstration introduces

a class of fiber lasers with clear potential for few-cycle pulse generation.

The spectral bandwidth of a similariton grows exponentially in an amplifier.

However, the self-similar evolution is disrupted when the pulse bandwidth ap-

proaches the gain bandwidth of the amplifier, and this limits the pulse energy

and duration that can be achieved [38]. It may be possible to extend or continue

self-similar pulse evolution beyond an amplifier. For example, a fiber with lower

dispersion and/or higher nonlinear coefficient than the gain fiber can induce sub-

stantial spectral broadening. The linearly-chirped parabolic pulse produced by the

amplifier will maintain close to a parabolic shape and linear chirp in the passive

fiber.

The cavity (shown conceptually in Figure 4.10 and with experimental detail in

Figure 4.11) contains 30 cm of SMF (β2 = 230 fs2/cm), 80 cm of Yb-doped gain

3The research summarized in this section is published in full in Ref. [37].
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Figure 4.10: Conceptual schematic of the laser. HNLF: Highly nonlinear fiber.

fiber (gain coefficient = 6.8/m), and another 20 cm of SMF. The gain fiber and

SMF have a nonlinear coefficient of 4.5×10−4/(W m). Without the PCF, the laser

is an established self-similar laser [1]. A 1.6-m segment of PCF (NL-1050-NEG-1

from NKT Photonics A/S) with 2.2-µm mode-field diameter is employed in the

experimental setup. The PCF has β2 = 130 fs2/cm and nonlinear coefficient 9

times larger than that of the gain fiber. A 300 l/mm grating and a collimator

create a Gaussian spectral filter with 4-nm bandwidth. The laser employs NPE

as the saturable absorber, implemented by the quarter- and half-wave plates and

polarizer, and is mode-locked by adjusting the wave plates. An example of the
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Figure 4.11: Fiber laser schematic. QWP: quarter-waveplate; HWP: half-
waveplate; PBS: polarizing beam-splitter.
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broadest spectra that we have observed is shown in Figure 4.12. Significant energy

extends over nearly 200 nm at the base of the spectrum. The pulse energy is

1 nJ. We used multiphoton intrapulse interference phase scan (MIIPS) [39] to

characterize and dechirp the output pulse. After phase correction by MIIPS the

FWHM pulse duration is 21 fs, which corresponds to 6 cycles of the field. While

20% of the energy is in the secondary structure, these pulses were nevertheless used

to produce high-resolution images by third-harmonic generation microscopy [39].

(a) (b) (c)

Figure 4.12: Experimental (a) spectrum after the PCF, (b) output spectrum, and
(c) output autocorrelation signal after phase correction by MIIPS for a 21-fs pulse.

In conclusion, to avoid limitations caused by the gain bandwidth in amplifier

similariton fiber lasers, the spectrum can be broadened in a separate nonlinear

segment, and filtering produces the seed pulse to the amplifier that allows a self-

consistent solution. This technique opens a promising route to the development

of few-cycle fiber lasers, and clearly illustrates the benefits of a mode-locked laser

based on a local nonlinear attractor.
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CHAPTER 5

FUTURE DIRECTIONS

In this chapter, future directions aimed at improving the performance of fem-

tosecond mode-locked fiber lasers are presented. There are several directions in

which fiber laser research can head where progress is likely to both be made and to

have high impact. First, a brief summary is given of each of these directions. Then,

in section 5.1, a new approach to mode-locking is outlined, which if successfully

implemented, could offer another order-of-magnitude increase to the peak power

of femtosecond fiber lasers.

• Early mode-locked fiber lasers were based on Erbium-doped fibers, primarily

because they operate at 1550-nm wavelength, where telecommunications sys-

tems operate. Recent work, and the results presented in this thesis are based

on Yb-doped systems with amplifiers operating at around 1030-nm wave-

length. Yb-doped systems offer slightly higher efficiencies as well as larger

gain bandwidths, which allows for higher performance pulsed-operation.

While high quality mode-locked fiber sources exist at these two specific wave-

lengths, other wavelengths are often required for applications, and tunability

is desired. In particular, for many applications in nonlinear optics, medicine,

and sensing, integrated and robust laser sources around 2-µm wavelength are

needed. As an alternative to designing a technique for tuning the wavelength

from a well-established lasing medium, new lasing media are constantly being

developed. A promising example is thulium- and holmium-doped systems,

which operate at around 2-µm wavelength. Research into high peak power

sources has just begun in this direction with soliton mode-locking [1], and

even signs of mode-locking in the normal dispersion regime [2, 3]. Future
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progress in this direction will involve bringing 2-µm wavelength sources up

to the performance seen at 1030-nm by incorporating the mechanisms iden-

tified in this thesis. Tm/Hm-doped systems also come with the additional

benefit from a mode-locking perspective of a larger gain bandwidth, which

when incorporated with the appropriate mode-locking mechanism like am-

plifier similaritons, could allow for the shortest absolute pulse duration from

a fiber laser.

• The importance of low timing and intensity noise in fiber lasers is clear, par-

ticularly in relevant applications, such as research on frequency-combs (e.g.

see [4]). Recent numerical analysis in our lab has determined that there is a

strong link between the system parameters in a fiber laser (the spectral filter,

saturable absorber, group-velocity dispersion, pulse energy...etc) and its noise

performance. Future research could build on this conclusion experimentally

in order to develop guidelines for how to make quieter fiber lasers. Research

on frequency combs and imaging systems would greatly benefit from this

enhancement.

• As mentioned briefly in section 2.5.2, for wide-adoption of fiber lasers beyond

a controlled laboratory environment, they must be robust against environ-

mental perturbations. One way to decrease environmental disturbance is to

make the cavity without a free-space section (i.e. make it all fiber). This

route requires the use of fiber based components to replace all of the oth-

erwise free-space parts. In Ref. [5], for example, the authors use a fiber

isolator, a directional coupler for the output, polarization controllers which

bend the fiber to manipulate the fiber birefringence as a way to replace

the wave-plates, and a section of polarization-maintaining fiber to form an

all-fiber birefringence filter. These components allow for operation in the
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dissipative soliton regime. This route succeeds at making the laser more ro-

bust, but because the saturable absorber is dependant on the birefringence of

the fiber, environmental perturbations can still cause performance decreasing

fluctuations. A remaining so-called “holy grail” in fiber laser research is to

replace the environmentally sensitive saturable absorber, NPE, with a fiber-

ized saturable absorber which is insensitive to environmental stress. Kieu

et al. made a large step in this direction with the development of an all-

fiber dissipative soliton laser with a fiber format saturable absorber based on

carbon nanotubes [6]. While this technique has been successful at 1550-nm

wavelength, at 1-µm wavelength, the performance of the absorber degrades

with time. The origin of the degradation is still unknown. Further research

in this direction will have great impact in the field as a new generation of

high performance systems will see immediate broader use.

• As is clear from the results in section 2.5.1, increasing the size of the fiber core

increases the pulse energy available from a fiber-based system. While this

technique has been successfully implemented in dissipative soliton systems to

enhance the already high pulse energies (section 2.5.1), amplifier similariton

mode-locking has yet to benefit from such scaling. That is, all of the results

from chapter 4 could immediately gain a factor of > 30 in pulse energy

through the use of either photonic-crystal or chirally-coupled-core fiber.

In summary, through work individually in the directions above, an ultimate

goal in fiber laser research would be to build a large-mode area, all-fiber, low-noise

fiber source based on dissipative soliton or amplifier similariton mode-locking which

can operate with several different gain media. This result would virtually ensure

the replacement of solid-state sources for applications where a short pulse optical

source is necessary.

140



5.1 Mode-locking with dispersion-decreasing fiber

As evidenced by this thesis, amplifier similariton mode-locking is highly successful

for the achievement of high performance mode-locking. However, looking towards

the future, it is clear that because the pulse shaping mechanism occurs in the

bandwidth-limited gain fiber, at least part of the performance will ultimately be

limited by the gain bandwidth. Therefore, it would be ideal to have a section

of fiber in the cavity which could mode-lock the laser in a similar manner, but

without the limitation.

As early as 2004, self-similar parabolic pulses were also shown to be an asymp-

totic solution in dispersion-decreasing passive fibers (DDF) [7,8]. If the equations

which govern a pulse propagating in a dispersion-decreasing passive fiber are prop-

erly scaled, an equation with the exact form as that for amplifiers results. That

is,

∂u

∂ξ
=

Γ

2
u− i

β20

2

∂2u

∂t2
+ iγ(|u|2)u,

where

β2(z) =
β20

1 + Γz
, u = A

√
1 + Γz, and ξ =

β20 ln(zΓ + 1)

Γ
.

(5.1)

With our knowledge of the self-similar solution to an amplifier (chapter 4), it

is straightforward to then calculate the parabolic solution and its evolution in the

case of a dispersion decreasing fiber. The answer can be found to be:
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A(z, t) ∼
√
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(5.2)

Using the method of steepest descent, one can also calculate the corresponding

spectrum and its evolution:

A(z, f) =
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√√√√√1−
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2
 , where
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τ(z)Γ
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and

φ′′(ω) = −3β20

Γ
.

(5.3)

And finally converting to the most useful parameters one can calculate:

∆λFWHM =
√

2
λ2

c

2πc

(
EinγΓ

2β2
20

)1/3

(1 + Γz)1/3,
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.

(5.4)
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A major result of the dispersion-decreasing fiber solution is that both its pulse

duration and bandwidth evolution like z
1
3 instead of exponentially like in the case

of an amplifier. This is a result of the necessary scaling of the propagation equation

(Eq. 5.1). As a consequence, for a given propagation length the bandwidth in this

case will increase at a slower rate than in the case of an amplifier. However, from

these expressions, it is clear that there is much more tunability in initial and final

pulse parameters, because unlike with the gain in an amplifier, we can tune the Γ

parameter of the dispersion-decreasing fiber.

To illustrate the potential of using a DDF for fiber laser mode-locking here we

will present an example design for a high performance mode-locked result. First

we assume that there is no freedom to tune the values of λc, β20 and γ as these are

typically set by the desired lasing medium and the fiber material. This leaves us

with the freedom to tune Γ, Ein, and z. For a given Γ, the higher the Ein is the

higher the initial bandwidth has to be. Because we are working in an oscillator

and we want the highest possible energy, we will target the highest possible initial

bandwidth. Assuming this will be set by the gain medium, we now can have

any energy as long as Γ is properly chosen. Finally, z or the length of the DDF

is chosen such that there is significant propagation to attract to the self-similar

solution. Because bandwidth growth is a signature of nonlinear propagation, we

assume z must be large enough for the bandwidth to grow by at least a factor of

two.

An example GVD profile as a function of distance for a design target of 100

nJ is shown in Figure 5.1. 200 m of the DDF is required to achieve the necessary

nonlinear evolution. To verify the robustness of the nonlinear attraction and to

test the analytic results presented here, numerical simulations are performed for a
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Figure 5.1: GVD profile as a function of distance for a DDF designed to mode-lock
a 100-nJ fiber laser.

single pass through this fiber. The initial condition is a 40-nm Gaussian spectral

profile with 0.5-ps2 chirp. The evolution of the pulse through this fiber is shown

in Figure 5.2. The pulse duration and spectral bandwidth evolve as expected like

z
1
3 . Figure 5.2(c) as in chapter 4 shows the closeness-to-a-parabola parameter. It

is clear from these results that the pulse is evolving as predicted from Eq. 5.4.

In addition the output pulse (Figure 5.3(a)) is parabolic. The results shown here

suggest that with realistic parameters it may be possible to use a DDF to mode-

lock a high performance fiber laser and possibly gain another order of magnitude

increase in pulse energy performance. There are major obstacles to be tackled

before this can be achieved, however. For example, simulation of only a single

pass through the DDF is greatly time consuming owing to the number of points

required to store all of the data for the amplitude and the phase of the highly
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(a) (b) (c)

Figure 5.2: Evolution of the (a) pulse duration, (b) spectral bandwidth, and (c)
parabolic closeness factor in a 200-m DDF.

(a) (b) (c)

Figure 5.3: Output (a) pulse, (b) spectrum, and (c) dechirped pulse from a 200-m
DDF.

chirped pulse, in addition to the number of points in the propagation direction

required to ensure a smooth representation of the DDF. Therefore, new techniques

will need to be developed to simulate on oscillator with this fiber. Also, TOD

has been known to destabilize the evolution of a pulse in a dispersion decreasing

fiber; this issue must be simulated and tested for various lengths of fiber. Finally,

fabrication of such fiber can be challenging. Early possibilities and discussions with

manufacturers sound promising but it may be difficult to simultaneously control

the group velocity dispersion while minimizing all higher order dispersions.

In conclusion, here we investigate the possibility of mode-locking a fiber laser

with a dispersion-decreasing fiber. While the theoretical results look very promis-

ing, several obstacles must be surpassed before this exciting new mode-locking

technique can become a reality.
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APPENDIX A

CHAPTER 3 SIMULATION PARAMETERS

A.1 Dissipative soliton cavity

Simulations are solved with a standard symmetric split-step propagation algorithm.

Passive single-mode fibers are modeled with the nonlinear Schrodinger equation

with β2 = 230 fs2/cm and γ = 0.0047 (W m)−1. The active fiber is modeled by

a saturating gain, g = go/(1 + Epulse/Esat), where go corresponds to 30 dB of

small-signal gain, Epulse =
∫ TR/2

−TR/2
|A|2dt, where A is the electric field envelope, TR

is the cavity round trip time and Esat is the gain saturation energy. The fiber

is followed by a saturable absorber given by a monotonically increasing transfer

function, T = 1 − lo/[1 + P (τ)/Psat] where lo is the unsaturated loss, P (τ) is

the instantaneous pulse power and Psat is the saturation power. The absorber is

followed by a variable output coupler. The cavity consists of a single 6-m segment

of gain fiber with Esat = 7.2 nJ. After the fiber is a saturable absorber with

lo = 0.7 and Psat = 3 kW, a spectral filter with 12-nm bandwidth, and an 88%

output coupler. The simulation is seeded with a picosecond Gaussian temporal

profile and run until the pulse energy converges; the resultant output pulse energy

is 12 nJ.

A.2 Dispersion-managed cavity

A 450-cm segment of SMF precedes 23 cm of highly Yb-doped gain fiber, and a

20-cm segment follows it. The gain fiber includes a 40-nm distributed Gaussian

filter and no additional spectral filter is included. After the fiber section are the
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diffraction gratings, modeled as an anomalous dispersive delay, the dispersion of

which is varied to achieve a particular net GVD. The cavity has a net dispersion

of 5000 fs2, lo = 0.7, 90% output coupling, 80% additional loss from the gratings

and the collimator, Psat =5 kW and Esat = 1.2 nJ.

A.2.1 Passive self-similar mode-locking

The cavity consists of 25 cm of SMF with varying normal GVD, a section with

saturating gain and a gain filter with 40-nm bandwidth, a saturable absorber with

lo = 0.7, a 70% output coupler and a section with variable anomalous GVD. If

the anomalous GVD section is absent, the cavity represents a DS with 5000 fs2

net dispersion. If the magnitude of anomalous dispersion is increased and an equal

amount of normal dispersion is added to the fiber section, the net cavity dispersion

will remain at 5000 fs2 but the dispersion map will increase, modeling the cavity

of a self-similar laser. The dispersion map was increased until the simulations no

longer converged, with a dispersion of −110, 000 fs2 in the anomalous dispersion

segment.

A.2.2 Stretched dissipative soliton mode-locking

Simulations are run with the net GVD= 5000 fs2, lo = 0.7, 90% output coupling,

50% additional loss from the gratings and the collimator, no nonlinearity in the

first fiber, Psat =1kW, 6kW, and 21kW and Esat = 0.2nJ, 1.4 nJ and 5.0 nJ.

148


