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The applications of ultrafast optical pulses exploded in last two decade since the dis-

covery of a mode-locked Ti:sapphire laser. Ti:Sapphire lasers are great ultrafast optical

pulse sources but they are not suitable for some applications since they are are bulky,

expensive, and unreliable. So far, solid-state lasers including Ti:sapphire lasers are dom-

inant as ultrafast pulse sources. However, compact, inexpensive and stable fiber lasers

recently started to replace solid-state lasers. Even though fiber lasers have many practi-

cal advantages, the performance of fiber lasers is still below that of the solid-state fiber

lasers. Among many kinds of fiber lasers, a mode-locked ytterbium (Yb)-doped fiber

lasers has been received a broad attention for medical applications such as the biomedi-

cal imaging. This thesis summarizes the effort of the Yb-doped fiber laser performance

enhancement utilizing the pulse propagation at high normal dispersion.

In this thesis, femtosecond Yb-doped fiber lasers without anomalous dispersion el-

ement, so called all-normal-dispersion (ANDi) fiber lasers, are demonstrated based on

unique pulse shaping mechanism of the chirped pulse spectral filtering. ANDi fiber

lasers represent a new paradigm for femtosecond pulse generation. This new type of a

laser is very practical because it avoids the technical challenges of providing anomalous

dispersion without loss at 1 µm. Useful features of the ANDi fiber lasers have been

demonstrated experimentally in terms of the pulse energy, the pulse duration, the envi-

ronmentally stability, and controllable multipulsing states. Pulse energies > 20 nJ with

>100 kW peak power and pulse durations <100 fs are experimentally demonstrated.



Theoretical studies indicate that further performance improvement is quite possible.

The ANDi fiber lasers are not only practical femtosecond lasers, but also great research

tools for ultrashort pulse propagation phenomena. Dissipative solitons of complex cubic

quintic Ginzburg-Landau equation are demonstrated experimentally from an all-normal

dispersion fiber laser.

This thesis is not limited to the demonstration of ANDi lasers. It also covers in-

teresting pulse propagation phenomena in fiber lasers and amplifiers. The formation

of a second-order dispersion managed soliton, which is referred as an antisymmetric

dispersion managed soliton, in a fiber laser with a strong dispersion map is demon-

strated. Finally, the thesis describes the chirped-pulse-amplification system performance

enhancement with proper nonlinear phase shift and third-order dispersion.
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CHAPTER 1

INTRODUCTION

Ultrafast science is a rapidly growing field. This unique scientific field is not limited

to studying interesting ultrafast optical phenomena but it expands its impacts on various

other scientific fields and even industrial applications. These days, applying ultrafast

science in applications such as ultrafast event measurement, micromachining, medical

imaging, telecommunication, etc. is not a breaking science news anymore. Interest in

ultrafast science has grown significantly in the last decade and it is expected to grow

further. It is strongly believed that the public will face more and more commercial

devices based on ultrafast science and technologies.

Ultrafast science has been led by high intensity femtosecond pulse sources. Solid

state lasers are great devices to generate intense femtosecond pulses. Among them, most

notable is the mode-locked Ti:sapphire laser which was a major discovery to provide in-

tense femtosecond pulse sources to overall ultrafast science to date. Ti:sapphire lasers

with highest peak-power and the shortest pulse duration have been such great devices

for scientific researches. However, solid-state lasers are not user-friendly in general.

The usage of those lasers outside the research laboratories was discouraged because

most of solid-state lasers are bulky, expensive, and unreliable. For example, even with a

tremendous effort in last two decades to make Ti:sapphire lasers user-friendly devices,

the Ti:sapphire lasers are still very bulky, excessively complicated, expensive and requir-

ing continuous maintenance. These cumbersome features of solid-state lasers are very

unattractive for numerous important applications requiring short pulses. Compact, inex-

pensive and robust femtosecond lasers will promote the usage of ultrafast technologies

not only in the industries but also in many other scientific researches.

Fiber lasers are strong candidates to relieve the obstacles to proliferate femtosecond
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mode-locked lasers beyond research laboratories. Femtosecond fiber lasers have major

practical advantages over solid state lasers. Most notable practical advantages of fiber

lasers are as follows. Fiber lasers are impervious to the bulk optics misalignment with

light confined within the optical fiber. The stability against the misalignment makes the

fiber lasers low maintenance devices. The lasers can be made very compact since the

flexible fiber can be packed to occupy a negligibly small volume comparing to bulky

solid state lasers. Since the laser beam is the mode of the fiber, the spatial quality of the

beam is outstanding. A large fiber surface to volume ratio makes complicated cooling

devices unnecessary for fiber lasers. Many parts for the fiber lasers are already devel-

oped and commercially available targeting telecommunication industries. Therefore,

fiber lasers can be manufactured with low cost since many parts are mass produced for

telecommunication industries.

Even though fibers lasers are attractive solutions for the wide-spread usage of fem-

tosecond mode-locked lasers, they certainly have their own problems. The performance

of fiber lasers, such as peak-power, pulse energy and pulse durations, is still below that

of the solid state laser. At some lasing wavelength, fiber lasers still contained apprecia-

ble bulk optical components which is against the practical advantage of the waveguide

medium. Recognizing practical advantages of fiber lasers, scientists and researchers de-

voted tremendous efforts to improve the performance of the fiber lasers. As the result of

active researches, not only the significant performance improvement was achieved but

also the scientific knowledge of the fiber lasers dramatically increased recently.

However, the best performance was achieved still from fiber lasers with appreciable

intracavity bulk optical components. The necessity of intracavity bulk optical compo-

nents is mostly due to the anomalous dispersive segment. It was commonly believed

that a fiber laser should have a dispersion, which is composed of a normally dispersive
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segment and an anomalously dispersive segment, to produce femtosecond pulses. Many

fiber lasers were built based on that common knowledge but for certain lasing wave-

lengths (i.e. 1 µm of Ytterbium (Yb)-doped fiber), providing intracavity anomalous

dispersion is quite challenging. Except the cases of specially designed fibers such as

photonic crystal fibers (PCF) and hollow photonic bandgap fibers (PBF), regular single-

mode fibers (SMF) at 1 µm are normally dispersive. As the result, high performance

Yb-doped fiber lasers usually contained bulk anomalous dispersion components such as

a grating pair, a prism pair, etc. Of course, Yb-doped fiber lasers with PCF or PBF were

demonstrated successfully but the performance did not reach that of fiber lasers with

bulk components.

The difficulty was relieved recently. Femtosecond fiber lasers without anomalous

dispersion elements was demonstrated based on unique pulse shaping mechanism of

chirped pulse spectral filtering. The new pulse shaping mechanism is quite different

from conventional fiber laser pulse shaping mechanisms. The demonstration of fem-

tosecond fiber lasers with only normal dispersion, which was referred as all-normal dis-

persion (ANDi) fiber laser, has shattered the dispersion map requirement. The discovery

of ANDi fiber laser provides an immediate practical benefit of femtosecond fiber lasers

without bulk anomalous dispersive segments or complex specially designed fibers. Due

to its simplicity, several different research groups already devoted efforts to produce all-

fiber integrated version of ANDi fiber lasers. The simplicity is not the only strength

of ANDi fiber lasers. Experimental observations and theoretical studies show that the

potential of the ANDi laser is remarkable. Pulse energies > 20 nJ with >100 kW peak

power and pulse durations <100 fs are already demonstrated. Theoretical studies in-

dicate that further performance improvement is quite possible. The ANDi fiber lasers

are not only practical femtosecond lasers, but also great research tools for ultrashort

pulse propagation phenomena. Dissipative solitons of complex cubic quintic Ginzburg-
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Landau Eq. were demonstrated from a laser cavity for the first time using an ANDi fiber

laser.

In this thesis, the features of the ANDi fiber laser along with a theoretical study

is proudly presented. The performance of ANDi fiber lasers is described in terms of

the pulse energy, the pulse duration, and the environmental stability. The systematic

behavior study of the ANDi fiber lasers and the observation of dissipative solitons of

a famous complex cubic quintic Ginzburg-Landau Eq. are also presented. We believe

that simple, high-performing ANDi fiber lasers will find many applications not only in

industries but also as research tools in various fields of science.

1.1 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 1 provides the background mode-

locked laser theories including nonlinear Schrödinger equation, Ginzburg-Landau equa-

tion and their solitary analytic solutions. The pulse shaping mechanisms of the mode-

locked fiber lasers are discussed based on the soliton, the dispersion managed (DM)

soliton, and the self-similar pulse evolution in the laser cavity. The important laser

components such as a saturable absorber and a spectral filter which determine the char-

acteristic of fiber lasers are covered briefly.

Chapter 2 describes the ANDi fiber laser pulse shaping mechanism and a design

rationale based on the numerical simulations. Experimental results based on various

spectral filters and gain fibers including Erbium-doped fibers.

In Chapter 3, a systematic study of ANDi fiber lasers with numerical simulations

and experiments is presented. The systematic study shows the laser characteristic de-

pends mainly on three laser design parameters of the group velocity dispersion (GVD),
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the nonlinear-phase shift (ΦNL) and the spectral filter bandwidth (BW). The chapter de-

scribes the effect of each parameters. Along with the theoretical study based on numeri-

cal simulations, the connection between the ANDi fiber lasers and the analytic solutions

of complex cubic quintic Ginzburg-Landau equation is discussed. The similarities be-

tween the ANDi fiber laser operations and the dissipative solitons of complex cubic

quintic Ginzburg-Landau equations are presented.

Chapter 4 presents the investigation of high pulse energy generation in ANDi fiber

lasers. By selecting appropriate GVD, spectral filter and proper pump power, ∼25 nJ

pulse energy with ∼150 fs pulse duration is achieved.

Chapter 5 presents the investigation of short pulse generation in ANDi fiber lasers.

Pulse durations of 70∼80 fs are obtained experimentally. The chapter also presents the

numerical simulation result showing the possibility of ∼10 cycle pulse generation in

ANDi fiber lasers.

Chapter 6 describes the experimental demonstration of environmentally stable ver-

sion of ANDi fiber lasers utilizing polarization maintaining fibers. The self-starting is

initiated by the semiconductor saturable absorber. The unique pulse shaping mechanism

of chirped pulse spectral filtering gives femtosecond pulses at very high normal GVD.

Chapter 7 describes the observation of high-harmonic mode-locked operations of

ANDi fiber lasers. Interestingly, the operation is tunable from a soliton bunch state to

a high-harmonic mode-locked state by adjusting the spectral filtering. The theoretical

understanding of the phenomena is discussed.

In Chapter 8, the subject is changed from ANDi fiber lasers to an interesting second-

order DM soliton mode of a fiber laser with a dispersion map. The second-order DM

soliton is referred as the antisymmetric DM (ASDM) soliton. The observation of the
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ASDM soliton in an fiber laser oscillator is reported.

In Chapter 9, theoretical study of the chirped-pulse amplification (CPA) system with

high nonlinearity and third-order dispersion (TOD) is described. Interestingly, with

a substantial ΦNL and proper TOD, the final amplified pulse duration and quality are

improved. This chapter provides the theory to optimize the CPA system performance by

manipulating the ΦNL and TOD.

In Chapter 10, future research directions for fiber lasers and amplifiers are suggested.

1.2 Passive pulse propagation in a fiber

The optical pulse propagation in a non-resonant third-order nonlinear medium such as

an optical fiber can be well described by the nonlinear Schrödinger equation (NLSE). By

solving the NLSE, one can predict the pulse evolution in various fiber systems. In this

section, three important passive solitary-wave solutions of the fiber system described by

the NLSE are discussed. Those solutions are directly related to the mode-locked fiber

laser pulse shaping mechanisms.

1.2.1 Nonlinear Schrödinger equation and solitons

The derivation of the NLSE equation from the well-known Maxwell’s equation is well

covered in numbers of textbooks such as Ref [1, 2]. The final equation obtained through

a somewhat lengthy derivation is
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∂A
∂z

+
α

2
A + i

β2

2
∂2A
∂t2 −

β3

6
∂3A
∂t3 = iγ[|A|2A +

i
ωo

∂

∂t
(|A|2A) − TRA

∂|A|2
∂t

]. (1.1)

The Equation 1.1 describes how the slowly-varying envelope function A = A(t, z)

evolves in a third-order nonlinear medium (i.e. χ2 =0, χ3 ,0 ) where t is the local

time and z is the propagation distance. α represents the gain / loss coefficient. β2 and

β3 are coefficients of the Taylor expanded propagation constant β(ω) around the carrier

frequency ωo given by the following equation.

β(ω) = βo + β1(ω − ωo) +
1
2
β2(ω − ωo)2 +

1
6
β3(ω − ωo)3 + ... (1.2)

β2 and β3 are referred as the GVD and TOD coefficient respectively. Fourth and

higher-order dispersion coefficients are neglected in Equation 1.1 since their effects on

the pulse propagation are negligible in most cases especially for fibers. γ is referred as

the nonlinear coefficient which is defined as γ = ωon2/(cAe f f ) where n2 is the nonlinear

index coefficient and Ae f f is the effective mode area. i
ωo

∂
∂t (|A|2A) and TRA∂|A|2

∂t terms are

higher-order nonlinear terms related to the self-steepening and the raman self-frequency

shift respectively. For a relatively long pulse duration >100 fs with a low peak power,

which is valid for most of fiber lasers, the TOD and higher-order nonlinear terms are

negligible. Moreover, the gain / loss (α) of the pulse while it propagates within the fiber

is negligible. By eliminating the gain / loss, the TOD and higher-order nonlinear terms

from Equation 1.1, the famous NLSE is obtained.

∂A
∂z

+ i
β2

2
∂2A
∂t2 = iγ|A|2A. (1.3)

The NLSE contains only two phase modulation terms due to the GVD and the non-
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linearity. This equation is integrable using the inverse scattering method. The soliton

solution of the NLSE is report by Zakharov and Shabat in 1971 [3]. In fact, the NLSE

has many solutions for each integer value of N = γPo(to)2/|β2|. When N=1, the phase

modulation due to the GVD and the self-phase modulation (SPM) can cancel each other

perfectly if β2 and γ have different signs. In case of a silica fiber, γ is always positive

and therefore, Equation 1.3 requires negative β2 (anomalous dispersion) to have a per-

fect phase cancelation. In this case, Equation 1.3 has a soliton solution which propagates

the nonlinear medium without changing its shape. This solution is referred as a funda-

mental soliton. When N >1, Equation 1.3 has complicated breathing solutions which

are referred as higher-order solitons. The fundamental (N=1) soliton has a characteristic

hyper-secant functional form as shown in Equation 1.4.

A(t, z) = AoS ech(t/to)eiz/2. (1.4)

For N=1 case, one more analytic solution exists with a characteristic hyper-tangent

functional form for positive β2. This solution is referred as a dark soliton while the

ordinary soliton with a hyper-secant pulse shape is referred as a bright soliton. Since

solitons in fiber lasers are most likely to be bright solitons, a soliton in this thesis always

means a bright soliton. The amplitude Ao of the fundamental soliton is a function of β2

and γ.

Ao = (
|β2|
γto

)1/2 (1.5)

Equation 1.5 can be reduced to a simple relationship of Aoto = const which is known

as the soliton area theorem. It means that for a given pulse duration, the soliton energy

is fundamentally limited. The existence of solitons in an anomalously dispersive optical
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fiber was first demonstrated in 1980 [4]. Since the fundamental soliton does not change

its shape while it propagates in an anomalously dispersive fiber, a soliton is a good can-

didate for pulses in mode-locked fiber lasers. The boundary condition of the cavity can

be automatically satisfied by a soliton. Famous soliton fiber lasers are based on the soli-

ton pulse shaping in a passive propagation. The soliton pulse shaping mechanisms will

be discussed in a later section along with other conventional pulse shaping mechanisms.

When two or more waves co-propagate inside a nonlinear material, they can interact

each other nonlinearly to modulate the phase of the adjacent wave. This phenomenon

is referred as cross-phase modulation (XPM). The NLSE is valid when there is no bire-

fringence in a fiber. However, in a case of a fiber with nonzero linear birefringence,

which is true in general, two different modes (polarization modes) have to be counted

separately to describe the pulse propagation appropriately. For a fiber with large linear

birefringence, the pulse propagation can be presented by a set of two coupled equations

with proper XPM terms [2].

∂Ax

∂z
+ i

β2

2
∂2Ax

∂t2 = iγ(|Ax|2 +
2
3
|Ay|2)Ax. (1.6)

∂Ay

∂z
+ i

β2

2
∂2Ay

∂t2 = iγ(|Ay|2 +
2
3
|Ax|2)Ay. (1.7)

x and y represent birefringence principle axes of a fiber. 2
3 iγ|Ay|2 and 2

3 iγ|Ax|2 are

XPM terms. Without XPM, the coupled equations reduced into two separate NLSEs.

1.2.2 Dispersion-managed solitons

The first discovery of an interesting soliton solution in a fiber transmission line with

a dispersion map of periodically alternating signs ( + for normal and - for anomalous
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Figure 1.1: DM solitons in a nutshell. Top: Scheme of a prototypical dispersion
map. Middle: Pulse behavior (pulse width above and chirp below) in
the linear limit. Bottom: Pulse behavior at the power level for solitons.
Note that the plots of pulse BW (above) and the pulse width (below)
refer to the same zero. From [6].

GVD fibers) of the GVD was by Suzuki et al. in 1985 [5]. The soliton solutions of

the dispersion map were called dispersion managed (DM) solitons and the technique

of utilizing dispersion maps to obtain desired pulse propagation is referred as a disper-

sion management. The DM soliton received tremendous attention owing to its energy

scalability to have less timing jitter in the optical telecommunications. As a DM soli-

ton propagates in a dispersion map, the pulse duration is strongly varied periodically.

However, at the end of each dispersion map period, a DM soliton returns to its original

pulse profile. Therefore, it effectively acts like a soliton in average. The DM soliton

propagation in a dispersion map can be visualized by plotting pulse parameters vs. the

propagation distance (Figure 1.1).
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The top of Figure 1.1 shows a fiber passive transmission line with numbers of dis-

persion maps. The net GVD of the dispersion map is not zero but slightly anomalous

(dotted line in Figure 1.1 top). It is useful to investigate how a pulse with negligi-

ble intensity (i.e. ΦNL ≈0) propagates in a DM transmission line. Since the nonlinear

effect is negligible, the pulse only experiences periodically alternating GVD. As the

consequence, the pulse duration breathes heavily nd the average pulse duration slowly

increases since the pulse experiences non-compensable net GVD (Figure 1.1 middle).

Once the pulse intensity is at the level of a DM soliton to counterpart the dispersion

broadening effect, the pulse becomes a soliton solution of a dispersion map. The pulse

still breathes heavily but it comes back to its original pulse duration and spectral BW at

the end of each dispersion map (Figure 1.1 bottom). The typical DM soliton evolution

shows local pulse duration maxima at the end of each dispersive segment while minima

are located around the mid-point of the each dispersive segment.

Theoretically, DM soliton evolution is still governed by Equation 1.3 but with β2 and

γ which are functions of the propagation distance z.

∂A
∂z

+ i
β2(z)

2
∂2A
∂t2 = iγ(z)|A|2A (1.8)

Unfortunately, Equation 1.8 is not integrable even for the simplest dispersion map.

Equation 1.8 can be solved numerically or approximated solutions can be obtained by

the variational or the perturbational method. Various approaches indicate that the DM

soliton is quite close to a breathing Gaussian ansatz such as A(z, τ) = Aoexp(−(1 +

iC)t2/2t2
o+iφ). Again, since DM solitons return to their original shapes periodically, they

are also good candidates for pulses in mode-locked fiber lasers since they can satisfy the

cavity boundary condition. The pulse energy of the DM soliton is much higher than

that of the regular soliton. Therefore, larger pulse energy is expected from a DM soliton
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fiber laser than that from a soliton fiber laser.

1.2.3 Self-similar pulse propagation and similariton

Anderson et al. showed that the a sufficient condition to avoid pulse-breaking in a

normally dispersive nonlinear medium is to have a pulse acquiring monotonic chirp as

it propagates [7]. In a sequential work, they suggested a unique wave-breaking free

solutions of the NLSE in a purely normally dispersive medium with a form of



A(t, z) = Ao

√
1 − (t/to(z))2exp(ib(z)t2) |t| < to(z)

A(t, z) = 0 |t| > to(z).
(1.9)

The pulse is a highly chirped solution with a parabolic temporal and spectral profile.

This type of pulse propagates self-similarly in a normally dispersive nonlinear medium

meaning that the pulse shape is maintained and it is always a scaled up version of itself.

The ΦNL acquired by this type of a pulse is parabolic which converts to a linear chirp in

the frequency domain. Hence, even for a very large ΦNL, the parabolic pulse propagates

without wave-breaking which is a qualitatively different feature from a soliton or a DM

soliton. The discovery of self-similar propagation immediately opens the possibility of

generating wave-breaking free pulses with very large pulse energies in a normal GVD

fiber. Consequently, the pulse behavior in an amplifier to generate large pulse energies

quickly became a subject of interest.

∂A
∂z

+
α

2
A + i

β2

2
∂2A
∂t2 = iγ|A|2A. (1.10)

A slightly modified NLSE (Equation 1.10) with a gain term was theoretical investi-
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gated to see the pulse propagation in an amplifier. It was indeed proved that the parabolic

pulses surely propagates self-similarly [8] followed by the experimentally verification in

a fiber amplifier [9]. This type of a parabolic pulse is called a ‘similariton’ to emphasize

a solitary-wave feature of the pulse. The analytic solution of the similariton under an

amplification is given by



A(t, z) = Ao(z)
√

1 − (t/to(z))2exp(ib(z, t)t2) |t| < to(z)

b(z, t) = bo + 3γ(2α)−1A2
o(z) − α(6β2)−1t2

Ao(z) = 0.5(αEin)1/3(γβ2)−1/6exp(αz/3)

to(z) = 3α−2/3(γβ2)1/3E1/3
in exp(αz/3).

(1.11)

Ein in Equation 1.11 is the amplifier input pulse energy. The self-similar propaga-

tions of the parabolic pulse in an optical fiber and a fiber amplifier are illustrated in

Figure 1.2.

Even though the similariton does not return to its original pulse profile as it propa-

gates in the normally dispersive fiber, it is still a good candidate for pulses in mode-

locked fiber lasers since the pulse does not experience wave-breaking with a self-

similarly evolving pulse shape. Furthermore, since the similariton does not break up

even at a very large ΦNL, a similariton fiber laser is expected to have much higher pulse

energies. The generation of solitons, DM solitons and similaritons in fiber lasers will be

covered in the next section.
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Figure 1.2: Illustration of self-similar evolution in ordinary fiber (left) or amplifier
fiber (right).

1.3 Pulse shaping in fiber lasers

A laser is referred as mode-locked when the laser has a short pulse solution due to the

phase-locking of multi-longitudinal modes of the laser cavity. The mode-locking tech-

niques are categorized as a passive mode-locking and a active mode-locking. Passive

mode-locking means that the pulse formation is due to the dynamics of pulse propaga-

tion in a resonant cavity without external (active) components to induce mode-locking.

Passive mode-locking is known for shorter pulses than those of the active mode-locking.

The passive mode-locking is easily achieved by a saturable absorber (SA). A SA is an

element with a nonlinear loss which increases as the incident light intensity decreases

(Figure 1.3). As shown in Figure 1.3, when a given noisy field profile travels through a

SA repeatedly in a cavity, a pulse with a high peak intensity and a short pulse duration

can be promoted by the nonlinear loss from a SA.
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Figure 1.3: Transmittance vs. intensity for a saturable absorber (SA), and illustra-
tion of its effect on pulses.
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Figure 1.4: Schematic of a soliton fiber laser. The pulse is nominally constant
throughout the laser.

By using an intracavity SA with an appropriate dispersion map, soliton, DM soliton

and similariton pulses in a fiber laser can be realized. A soliton fiber laser [10, 11, 12]

is schematically presented in Figure 1.3.

The soliton fiber laser cavity consists of an anomalously dispersive fiber, an anoma-

lously dispersive gain fiber and a SA. A soliton, which is a natural solution of an anoma-

lously dispersive fiber according to the NLSE, preserves its shape while it propagates

in an anomalously dispersive fiber. As the soliton is amplified in a gain fiber, the pulse

is not an exact soliton anymore due to the excessive energy and some possible small

distortions. However, the excessive energy is coupled out of the cavity as a laser output

and the SA compensate the small distortion due to the gain fiber. The SA actions is
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Figure 1.5: Schematic of a DM soliton fiber laser, with the corresponding disper-
sion map above. The pulse has maximum duration at the end of each
segment of the dispersion map, and compresses to minimum duration
in the center of the segment.

crucial to start the pulse in a laser but after the soliton is established in a laser, the effect

of the SA becomes a small perturbation. After the SA and the laser output coupling out,

the remaining pulse, which goes back into the fiber cavity, evolves into an exact soliton

again. Therefore, the pulse in a soliton fiber laser is nominally constant throughout the

laser except some perturbing distortions introduced by the gain and the SA. The soli-

ton fiber lasers are stable and good for generating femtosecond pulses. However, the

pulse energy in a soliton fiber laser is limited fundamentally. For a given dispersion and

the pulse duration, the pulse energy is already determined by the soliton area theorem

(Equation 1.5). Consequently, the typical pulse energies from fiber lasers are limited to

∼0.1 nJ.

Another important pulse in a fiber laser is the DM soliton. A fiber cavity with a

proper SA and a dispersion map, which consists of a normally dispersive fiber segment

and an anomalously dispersive fiber segment, with close to zero net GVD can generate

DM solitons. The schematic of a DM soliton fiber laser with a characteristic pulse

propagation is shown in Figure 1.5.
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As observed in the passive propagation of a DM soliton, the intracavity pulse evo-

lution has local minima around mid-points of the each dispersive segment. Again, the

pulse is distorted by the gain and the laser output coupling but compensated by the SA.

However, their effects are not significant enough to disturb the characteristic pulse evo-

lution of the DM soliton. The SA action is again important for the starting but again it

becomes a small perturbation when the DM solitons are established in the fiber laser.

The first DM soliton laser was demonstrated by Tamura et al. in 1993 [13]. Tamura

and coworkers referred this type of a laser as a “stretched-pulse” laser emphasizing the

characteristic stretched (chirped) pulse evolution. The soliton and DM soliton fiber laser

are based on so-called “soliton-like” pulse shaping relying on the phase compensation

due to the anomalous GVD and the positive nonlinearity. As expected from the passive

propagation analysis, the pulse energy from the stretched pulse fiber laser was roughly

an order of magnitude higher than that of the soliton fiber laser.

When the net cavity GVD is large normal, the soliton-like pulse shaping is not pos-

sible anymore. However, the fiber laser still can be mode-locked for various interesting

modes with unique evolutions. One of those modes is the realization of the similariton in

a fiber laser. The first similariton fiber laser was by Ilday et al. [14]. The pulse evolution

in a similariton fiber laser is presented in Figure 1.6.

The pulse evolution in the similariton laser is qualitatively different from that in

lasers with a soliton-like pulse shaping. Ilday and coworker’s approach was to generate

a ‘Anderson’ similariton in a normally dispersive fiber. Once a similariton is established

in a normally dispersive fiber, the pulse propagates self-similarly with a monotonically

increasing pulse duration and a linear chirp. The self-similarly evolving pulse is ampli-

fied by the gain fiber again with a linear chirp but amplified to have a higher intensity

level (Figure 1.2). The SA not only shortens the pulse duration in time domain but also
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Figure 1.6: Schematic of a similariton fiber laser, with the corresponding disper-
sion map above. The pulse evolves self-similarly in the normal disper-
sion segment, and compresses in the anomalous dispersion segment.
Note that the anomalous dispersion segment has no nonlinearity.

reduces the spectral BW since the pulse is highly chirped. After the SA, an anomalous

dispersive delay line with negligible nonlinearity reduces the pulse duration further to

go back to the original input pulse shape. Unlike the soliton-like pulse shaping, the SA

still contributes heavily to stabilize the pulse evolution even after the similariton is es-

tablished in the cavity . As predicted from the passive propagation analysis, the pulse

energy from this kind of a laser was remarkable. The pulse energy was even compatible

to that of the Ti:Sapphire at ∼1 µm wavelength [15].

1.4 Ginzburg-Landau equation and dissipative solitons

The passive pulse propagation in a fiber can be modeled well by the NLSE. However,

fiber lasers have components which cannot be modeled by several phase modulation

terms in the NLSE. For example, a fiber laser has a gain with a limited gain BW and a

SA. They don’t induce the phase modulation but they surely cause the amplitude modu-

lation in the frequency and the time domain. To count the amplitude modulation effects
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in a laser cavity properly, more terms are to be added to the NLSE. The resulting differ-

ential equation is called a cubic-Ginzburg-Landau equation (CGLE) (Equation 1.12).

∂A
∂z

= gA + (
1
Ω
− i

D
2

)
∂2A
∂t2 + (α + iγ)|A|2A. (1.12)

In Equation 1.12, all coefficients are averaged parameters that the pulse experiences

in a round trip of the cavity. g is the net gain which is the combination of the gain from

the gain fiber and the loss due to the laser output coupling. Ω is related to the spectral

amplitude modulation such as the gain BW or the intracavity spectral filter. α is the

cubic intensity dependent amplitude modulation term which is related to the SA. Ob-

viously, since all the parameters are equally distributed with respect to the propagation

distance, the equation cannot model the pulse evolution in a cavity. However, the CGLE

is successful to model mode-locked lasers with weak pulse-shaping [16]. The general

solution of the CGLE is a chirped hyper-secant profile which is given in Equation 1.13.

U[t, z] = Aosech(
t
τ

)exp(iβ ln(sech(
t
τ

)) + iθz) (1.13)

The Equation 1.12 is also called a “master equation”. Even though the solution

of the master equation does not provide any information about the intracavity pulse

evolution, it was successful at least to predict the qualitative trend of the lasers with

a strong evolution. For example, the master equation prediction of the pulse energy

vs. the net GVD and the pulse duration vs. the net GVD, which guided fiber laser

researchers for many years, were moderately successful to predict the laser performance

qualitatively. A typical example is achieving higher pulse energy in a higher the normal

net cavity dispersion according to the master equation prediction. Motivated by the

master equation prediction, researchers devoted tremendous efforts to generate higher
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pulse energies with large net normal cavity dispersion successfully. Detailed description

of such trends can be found in Ref [16].

The solution of the CGLE can be categorized as a dissipative soliton. A dissipative

soliton is a localized structures which exists for an extended period of time, even though

parts of the structure experience gain and loss of energy and /or mass [17]. Dissipative

solitons were found variety of physical chemical and biological systems. Since the

dissipative processes (spectral filtering and saturable absorption) in Equation 1.12 are

essential to form stable pulses in the fiber cavity, the solution of fiber laser system can

be categorized as dissipative solitons. In contrast, when the dissipative processes are not

so important for the laser pulse shaping (i.e. soliton and DM soliton fiber lasers ), the

solutions of the lasers are closer to the solitons in conservative (Hamiltonian) systems.

Due to its strong dissipative nature of the ANDi fiber laser, the pulse generated in the

ANDi fiber laser definitely shows the features of dissipative solitons. In fact, the pulse

generated in the ANDi fiber laser resemble the solution of a cubic-quintic Ginzburg-

Landau equation (CQGLE) which is a modified version of Equation 1.12. Detailed

description of the dissipative solitons in the ANDi fiber laser is presented in chapter 3.

1.5 Fiber laser components for amplitude modulation

A fiber laser consists of a gain fiber, a SA, a wavelength division multiplexer (WDM),

a pump laser, etc. They are all important components to build a fiber laser and each

of them well deserves a separate attention. However, in this thesis, the main focus will

be on the components inducing dissipative processes. Owing to those components, a

conservative NLSE fails to model the fiber laser appropriately while the model with

a proper dissipative terms such as a CGLE becomes a better model. There are two
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important dissipative components to be discussed. The first component is the SA which

induces a temporal amplitude modulation and the second one is the spectral filter which

induces a spectral amplitude modulation. Of course, a gain fiber, which is a critical

component to build a fiber laser, also induces some spectral amplitude modulation via

gain narrowing. However, since the most of spectral filtering is due to physical spectral

filters in ANDi fiber lasers, the role of the gain fiber with limited gain BW is not covered

in this thesis.

1.5.1 Saturable absorber

As pointed out previously, a SA is an element with increasing nonlinear loss as the

incident light intensity decreases. This element contributes to start and shape pulses in

passively mode-locked fiber lasers. In this subsection, two SAs used in ANDi fiber lasers

are briefly discussed. The first one is an artificial SA utilizing a nonlinear polarization

evolution (NPE) phenomenon. The second one is a semiconductor saturable absorbing

mirror (SESAM).

Nonlinear polarization evolution

Utilizing the nonlinear polarization evolution (NPE) conjunction with a polarizer, which

was once referred as an ‘artificial’ SA, is a widespread SA scheme in fiber lasers. The

NPE occurs due to the self-phase modulation (SPM) and the cross-phase modulation

(XPM) of two orthogonally polarized light components. The NPE can be understood

by considering how the circular polarization modes E± = Ex ± iEy evolve nonlinearly.

By performing a lengthy Jones matrix algebra, it can be shown that the polarization is

rotated in a Kerr (χ3) medium by angle ∆φ without changing the shape. The rotation
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Figure 1.7: Schematic of a NPE conjunction with a polarizer; QWP: quarter-
waveplate, HWP: half-waveplate, α1, α2 and θ2 are angles between
the principle axis of the waveplates with respect to the polarizer axis
respectively.

angle ∆φ is governed by Equation 1.14.

∆φ =
γL
3

(|E+|2 − |E−|2). (1.14)

Note that for linearly polarized cases (|E+|2 = |E−|2), the polarization rotation does

not occur. Figure 1.7 shows a typical NPE port used in fiber lasers. After the polarizer,

quarter waveplate evolves the linear polarization into the elliptical polarization. The

elliptically polarized light experiences NPE to rotate its polarization orientation in a

Kerr medium. A half and a quarter waveplate at the end of the Kerr medium adjust the

polarization to match the axis of the second polarizer.

By performing some matrix algebra, one can show that the outgoing normalized

intensity of the second polarizer becomes as follows.

I =
1
2

[1 − sin(2α1)sin(2α2) + cos(2α1)cos(2α2)cos(2(α1 + α2 − 2θ2 + ∆φ))]. (1.15)

The output intensity is an intrinsic function of the filed intensity since ∆φ is a func-

tion of the field intensity. The output intensity is not a monotonically increasing function
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with respect to the input filed intensity but it has some complicated sinusoidal feature

due to cos(2(α1 +α2 − 2θ2 + ∆φ) term. By putting waveplates at proper angles, the NPE

port can selectively transmit higher intensity to act just like a SA. The NPE port as a

saturable absorber was proposed by Hofer et al. [18]. The given NPE port configura-

tion (Figure 1.7), which is the standard configuration for the experiments presented in

this theses, is not the only possible NPE port configuration. Other configurations are

discussed thoroughly in Ref [19].

Semiconductor saturable absorbing mirror

Another important SA used in experiments is a SESAM. A SESAM consists of a Bragg-

mirror on a semiconductor wafer with a saturable absorbing semiconductor material.

Important parameters of the SESAM for the fiber laser design are the recovery time,

the modulation depth, the spectral BW, and the saturation intensity. For a fast saturable

absorber with a response time much shorter than the pulse duration, the reflection of the

SESAM can be modeled by Equation 1.16.

R = 1 − To/(1 +
|A(t)|2
Psat

). (1.16)

Where To is the transmission at low intensity (|A(t)|2=0) and Psat is the saturation

energy. Commercially available SESAMs with high modulation depth and fast response

time [20] motivated researchers to build a variety of fibers lasers with SESAMs recently.

For a broader overview of SESAMs see [20].
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1.5.2 Spectral filter

The spectral filter, which induces spectral amplitude modulation, is again an important

component to generate dissipative solitons in fiber lasers. Important spectral filters used

in experiments are interference, birefringence, and birefringence fiber loop filter.

Interference filter

An interference filter is a device that reflects spectral bands and transmits others. There

are various kind of interference filters such as high-pass, low-pass, and band-pass filters.

In this thesis, a band-pass interference filter, which is used in ANDi fiber lasers, is

discussed. The band-pass (narrow-band) interference filters selectively transmit spectral

components owing to the interference effects between the incident and reflected waves

in a the Fabry-Perot interferometer. The simplest structure of the band-pass interference

filter is shown in Figure 1.8.

The incident wave is resonantly reflected back and forth between two partially reflec-

tive dielectric walls. For a given optical distance between the dielectric walls, selective

component of the wavelength pass through the filter without much loss due to the con-

structive interference of the incident and reflective waves. Other components will be

attenuated due to the destructive interference. Consequently, the Fabry-Perot interfer-

ometer in Figure 1.8 works as a spectral filter which selectively passes desired spectral

components.

When the incident angle is increased, the center wavelength of the spectral filter

transmission curve is tuned according to following Equation 1.17.
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Figure 1.8: Schematic of a Fabry-Perot band-pass (narrow-band) interference fil-
ter

λc = λo

√
(1 − sin2θ

n2 ). (1.17)

θ is the incident angle, λc is the center wavelength of the filter transmission curve,

λo is the filter center wavelength at θ=0 (normal incidence), and n is the refractive index

of the material between dielectric walls. The tuned center wavelength is always shorter

than λo.

In general, it is tough for interference filters to generate filtering curves matching

mathematically well-known functions such as a Gaussian, a parabolic, etc. Figure

1.9 shows a measured transmission curve of a typical interference filter (λo=1030nm,

BW=10 nm). With such a structured transmission curve, it is hard to predict how the

intracavity interference filter affects the laser performance. The filter also introduces an

appreciable loss which also degrades the laser performance. For example, the measured

filter peak transmission is ∼ 60%.
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Figure 1.9: Measured transmission of interference filters (the center wavelength
of 1020, 1030, and 1040 nm with ∼10 nm BW)

Birefringence filter

The polarization of the wave is evolved in a strong birefringence material due to the

phase shift between the ordinary wave (o-wave) and the extraordinary wave (e-wave).

This polarization evolution is a strong function of the wavelength. By putting a polar-

izer, a combination of a birefringence material and a polarizer will act as a spectral filter

by transmitting certain wavelength selectively. This type of a spectral filter is referred as

a birefringence filter. The spectral filtering mechanism works as follows. In a birefrin-

gence medium, the phase shift (∆φ) can be expressed as a function of the wavelength

and the index difference between the o-wave and the e-wave as follows.

∆φ =
2π
λ

(ne − no)d. (1.18)

If a linearly polarized light has a 45 degrees of incidence angle with respect to the

principle axes of the birefringence medium, intensity will be contributed equally in the
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Figure 1.10: Calculated spectral transmission curve for a birefringence filter with
d=5 mm

o-axis and the e-axis. By putting a linear polarizer, transmission through the polarizer

becomes a function of ∆φ such as

T = cos2(∆φ/2). (1.19)

The resulted transmission curve is a sinusoidal curve of a cosine squared function.

For a real case of a quartz birefringence plate (no=1.53514,ne=1.54392 at ∼1 µm), which

is the material used to build a birefringence filter in experiments, one can theoretically

calculate the transmission curve of the spectral filter (Figure 1.10) which matches the

experimentally measured transmission curve. For example, for a quartz plate with a

5 mm thickness, calculated spectral filtering BW is ∼12 nm (Figure 1.10) while the

measurement shows an almost exact match (Figure 1.11). A birefringence filter has a

smooth transmission curve which can be modeled as a cosine squared function very

accurately.

Theoretically, the spectral filter BW decreases inversely proportional to the bire-
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Figure 1.11: Measured birefringence filter transmission with a) d=5 mm and b)
7.5 mm
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Figure 1.12: Measured birefringence filter BW vs. the thickness of the quartz
plate. The ∼ 1/λ line is the best fitting to the measured data. (1T∼0.5
mm)

fringence plate thickness. Measured BW with varying birefringence plate thickness

confirms the inverse proportionality.

Clever combinations of birefringence plates and polarizers such as a Lyot filter and

a Solc filter can generate various combinations of the BW and the free spectral range

(FSR). For detailed analysis of the birefringence filter including a Lyot filter, please see

Ref [21]. For Solc filters, Ref [22] covers the subject thoroughly. The center wavelength
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Figure 1.13: Schematic of a birefringence fiber loop filter; PC: polarization con-
troller

of the filter can be tuned easily by adjusting the birefringence plate orientation [23].

Birefringence fiber loop filter

A fiber-format birefringence filter provides a unique possibility of building an all-fiber

integrated ANDi fiber laser. By combining a Sagnac interferometer and a piece of a

strongly birefringent fiber, an interesting spectral filter which is referred as a birefrin-

gence fiber loop filter can be composed. Figure 1.13. shows the schematic of a bire-

fringence fiber loop filter. This type of a filter can be built easily with a commercially

available 50/50 fiber coupler, a polarization controller (PC) and a piece of a highly bire-

fringent fiber such as a polarization maintaining (PM) fiber.

By performing a lengthy Jones matrix algebra conjunction with solving a mode-

coupling equation in the 50/50 fiber coupler, it can be shown that the output intensity

is wavelength dependent. The output intensity satisfy the relationship in Equation 1.20

[24].
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Figure 1.14: Amplified spontaneous emission filtered by a birefringence fiber loop
filter

I = Iosin2(δ/2). (1.20)

δ is the linear birefringence of the birefringent fiber. Because the linear birefringence

is inversely proportional to the wavelength, the filter BW (∆λ) is

∆λ = (2πλ)/δ. (1.21)

The spectral filter BW is inversely proportional to the linear birefringence. The

center wavelength can be easily tuned by adjusting the PC. Since the device is in a fiber

format, loss will be much less than that of the bulk type birefringence filter.

Figure 1.14 shows a spectrally filtered amplified spontaneous emission of a Yb-

doped fiber. ∼25 cm of Corning’s PM 980 was used in a birefringence fiber loop filter.

The measured BW is ∼4.4 nm. Based on measured values, calculated beat length of the

PM fiber is ∼1.06 mm which roughly matches the manufacturer specification [25].
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CHAPTER 2

ALL-NORMAL-DISPERSION (ANDi) FIBER LASERS1

This chapter describes a fiber laser with only normally dispersive elements, which

referred as an all-normal dispersion (ANDi) fiber laser, with a unique pulse shaping

mechanism. The pulse shaping mechanism of a chirped pulse spectral filtering is clearly

different from the conventional pulse shaping mechanisms of soliton, DM soliton and

similariton fiber lasers. Various ANDi fiber lasers with a variety of spectral filters and

gain fibers are presented.

2.1 Introduction

The need to compensate group-velocity dispersion (GVD) is ubiquitous in femtosecond

pulse generation and propagation. Prisms [2], diffraction gratings [3], and chirped mir-

rors [4] have all been used to compensate or control GVD. Reliable femtosecond lasers

had to await the development of a low-loss means of introducing controllable GVD [2].

Pulse formation in modern femtosecond lasers is dominated by the interplay between

nonlinearity and dispersion [5, 6]. In all cases of practical interest, a positive (self-

focusing) nonlinearity is balanced by anomalous GVD. The need to compensate normal

GVD in the laser, along with the balance of nonlinearity in soliton-like pulse shaping,

underlies the presence of anomalous GVD in femtosecond lasers.

Most femtosecond lasers have segments of normal and anomalous GVD, so the cav-

ity consists of a dispersion map, and the net or path-averaged cavity dispersion can be

normal or anomalous. With large anomalous GVD, soliton-like pulse shaping produces

short pulses with little chirp. Some amplitude modulation is required to stabilize the

1Most of the results presented in this chapter have been published in Ref [1]
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pulse against the periodic perturbations of the laser resonator. Pulse formation and pulse

evolution become more complex as the cavity GVD approaches zero, and then becomes

normal. The master-equation treatment of solid-state lasers, based on the assumption

of small changes of the pulse as it traverses cavity elements, shows that stable pulses

can be formed with net normal GVD [6]. Nonlinear phase accumulation, coupled with

normal GVD, chirps the pulse. The resulting spectral broadening is balanced by gain-

narrowing. By cutting off the wings of the spectrum, gain dispersion shapes the temporal

profile of the chirped pulse. Proctor et al. showed that the resulting pulses are long and

highly-chirped [7], as predicted by the analytic theory [6]. Stable pulse trains can even

be produced without dispersion compensation, but the output pulses are picoseconds

in duration and deviate substantially from the Fourier-transform limited duration, even

after dechirping with anomalous GVD external to the cavity.

Fiber lasers can be constructed entirely of fiber with anomalous GVD, to generate

solitons as short as ∼200 fs in duration. However, the pulse energy is restricted by

the soliton area theorem and spectral sidebands [8] to ∼0.1 nJ. Much higher energies

are obtained when the laser has segments of normal and anomalous GVD. In general,

the pulse breathes (i.e., the pulse duration varies periodically) as it traverses the cav-

ity. Dispersion-managed solitons are observed as the net GVD varies from small and

anomalous to small and normal [9], and self-similar [10] and wave-breaking-free [11]

pulses are observed with larger normal GVD. The large changes in the pulse as it tra-

verses the laser preclude an accurate analytical treatment, so numerical simulations are

employed to study these modes. Among fiber lasers, Yb-based lasers have produced

the highest femtosecond-pulse energies, recently reaching 15-20 nJ [12]. The normal

GVD of single-mode fiber (SMF) around 1 µm wavelength has been compensated by

diffraction gratings, which detract from the benefits of the waveguide medium.
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With the goal of building integrated fiber lasers, microstructure fibers [13, 14] and

fiber Bragg gratings [15] have been implemented to compensate dispersion at 1 µm.

However, performance is sacrificed compared to lasers that employ diffraction gratings.

From a practical point of view, it would be highly desirable to design femtosecond-pulse

fiber lasers without compensation of the GVD of several meters of fiber. However, to

our knowledge there is no prior report of any laser that generates ∼100-fs pulses without

elements that provide anomalous GVD in the cavity.

Recently, Buckley et al. showed that the introduction of a frequency filter stabi-

lizes mode-locked operation of a Yb-doped fiber laser with normal cavity GVD (∼0.015

ps2), which allows the routine generation of 15-nJ pulses as short as 55 fs [16]. The

frequency filter produces self-amplitude modulation, which allows nonlinear polariza-

tion evolution (NPE) to be biased for higher pulse energies. By altering the laser cavity

to operate at large normal GVD (0.04 - 0.10 ps2), the frequency filter was found to

stabilize mode-locked operation characterized by highly chirped, nearly static pulses as

predicted by the theory of self-similar lasers [10]. Although Buckley et al. succeeded

in enhancing the stability of mode-locking at large normal GVD, the laser still required

some dispersion compensation with a grating pair.

Here we describe a femtosecond fiber laser with a cavity consisting only of elements

with normal GVD. By increasing the nonlinear phase shift accumulated by the pulse and

inserting a spectral filter in the cavity, self-amplitude modulation via spectral filtering is

enhanced. The laser generates chirped picosecond pulses, which are dechirped to 150-

300 fs outside the laser. These results are remarkable considering that the cavity consists

of ∼10 characteristic dispersion lengths of fiber with respect to the dechirped pulse, yet

no dispersion control is provided. The pulse energy is 1-3 nJ, and the laser is stable and

self-starting. The laser is thus a first step in a new approach to mode-locking.
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2.2 Design rationale and numerical simulations

The design of a femtosecond fiber laser without dispersion control in the cavity exploits

the understanding gained by the recent work of Buckley et al. [16]. The master-equation

analysis does not apply quantitatively to fiber lasers, but we are guided qualitatively and

intuitively by its predictions. The key elements of such a laser (Figure 2.1(a)) are a fairly

long segment of SMF, a short segment of gain fiber, a segment of SMF after the gain

fiber, and components that produce self-amplitude modulation. A significant nonlinear

phase shift is impressed on the pulse in the SMF that follows the gain, and NPE converts

the differential phase shift to amplitude modulation. Numerical simulations show that

stable solutions do exist in such a laser, for a reasonable range of parameters. The gain

bandwidth has a major influence on the pulse evolution. With large gain bandwidth

(BW) (>∼30 nm), approximately parabolic pulses evolve as in a self-similar laser [10].

As the BW is reduced to ∼10 nm, the spectrum develops sharp peaks on its edges, and

for narrower bandwidths the solutions do not converge.

Results of simulations with 10-nm gain bandwidth and 2-nJ pulse energy are shown

in Figure 2.1. The pulse duration increases monotonically in the SMF, and then de-

creases abruptly in the gain fiber. In the second segment of SMF the pulse duration in-

creases slightly, before dropping again owing to the NPE. The spectrum (Figure 2.1(b))

exhibits a characteristic shape, with sharp peaks near its steep edges. The pulse is highly-

chirped throughout the cavity, with the duration varying from ∼10 to ∼20 times the

transform limit (Figure 2.1(c)).

The simulations show that spectral filtering of a strongly phase-modulated pulse can

produce substantial amplitude modulation under realistic conditions. With additional

amplitude modulation from NPE, stable solutions exist. The pulse is highly-chirped
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(a)

(b) (c)

Figure 2.1: Numerical simulation result: a) Numerically simulated pulse evolu-
tion of the laser. A ring cavity is assumed, so the pulse enters the
first SMF after the NPE. Results of numerical simulations are shown
on the bottom. Power spectrum (b) and temporal intensity profile (c)
after the second SMF.

inside the cavity, but the phase is roughly parabolic near the peak of the pulse, so the

pulse can be dechirped outside the laser. The pulse shaping mechanism of this type of a

laser is based on the chirped pulse spectral filtering (CPSF). For a highly chirped pulse,

the spectrum is mapped to the time domain. When a highly chirped pulse is spectrally

filtered, the time pulse is also shortened. The process is illustrated in Figure 2.2.

In the previous simulation, the spectral filtering relies on a strong gain narrowing

effect which is not realistic. The realistic gain narrowing effect is not be strong enough

to have a stable mode-locked operation in this particular case. By inserting a spectral

filter in the cavity, one can adjust the spectral filtering strength to obtain stable mode-

locked operations. By inserting an appropriate spectral filter with realistic gain BW
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t t

Figure 2.2: Pulse-shaping by spectral filtering of a highly-chirped pulse, in which
frequency is mapped to time.

(a)

(b) (c)

Figure 2.3: Numerical simulation result: a) Numerically simulated pulse evolu-
tion of the laser. Results of numerical simulations are shown on the
bottom. Power spectrum (b) and temporal intensity profile (c) after
the second SMF; SF: spectral filter.

of the gain, the numerical simulation again shows stable mode-locked laser operations.

The pulse evolution with an intracavity spectral filter is shown in Figure 2.3. The gain

BW is set at ∼40 nm which is close to the realistic gain BW of Yb-doped fibers. A

Gaussian spectrum filter (∼12 nm BW) is inserted at the end of the second SMF.
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The laser produces results similar to Figure 2.1 with some noticeable differences

in the pulse evolution ( Figure 2.1(a) and Figure 2.3(a)). The output spectrum shows

similar characteristic shape with sharp peaks near its edges. It is clear that the pulse

amplitude modulation is not mainly due to the gain narrowing. The pulse duration drops

abruptly not in the gain fiber but in the spectral filter. The spectral filter BW in this laser

can be adjusted conveniently to observe different operating modes.

2.3 Experimental results

2.3.1 Interference filter

The numerical simulations offer a guide to the construction of a laser without anomalous

dispersion. The laser (shown schematically in Figure 2.4) is similar to the Yb fiber laser

of Lim et al. [17], but without the grating pair that provides anomalous GVD in earlier

designs. The fiber section consists of ∼3 m of SMF and 20 cm of highly-doped Yb gain

fiber, followed by another ∼1 m of SMF. Gain fiber with a 4-µm core diameter (which

is smaller than the 6-µm core of SMF) was chosen to increase self-phase modulation

(SPM) in the gain fiber. A 980-nm laser diode delivers ∼350 mW into the core of

the gain fiber. NPE is implemented with quarter-waveplates, a half-waveplate, and a

polarizing beamsplitter. The output of laser is taken directly from the NPE ejection port.

An interference filter centered at 1030 nm, with 10 nm bandwidth, is employed.

The optimum location for the filter is not clear. Placing it after the gain or second

SMF segment would maximize the amplitude modulation from spectral filtering and

correspond most closely to the simulations described above. However, we also want to

output the broadest spectrum and the largest pulse energy, to achieve the shortest and
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Figure 2.4: Schematic of ANDi fiber laser with a interference filter: QWP:
quarter-waveplate; HWP: half-waveplate; PBS: polarizing beam split-
ter; WDM: wavelength-division multiplexer; DDL: dispersion delay
line.

most intense pulse. Considering these factors, we placed the filter after the beam splitter.

This location also allows as much of the laser to be spliced together as possible. The

total cavity dispersion is ∼0.1 ps2.

The threshold pump power for mode-locking is ∼300 mW. Self-starting mode-

locked operation is achieved by adjustment of the waveplates. The laser produces a

stable pulse train with 45 MHz repetition rate. Although the continuous-wave output

power can be as high as ∼200 mW, in mode-locked operation the power is limited to 120

mW, which corresponds to a pulse energy of ∼3 nJ. Stable single-pulsing is verified with

a fast detector down to 500 ps, and by monitoring the interferometric autocorrelation out

to delays of ∼100 ps. Also, the spectrum is carefully monitored for any modulation that

would be consistent with multiple pulses in the cavity. Remarkably, there is no evidence

of multi-pulsing at any available pump power. However, with a single pump diode the

pump power only exceeds the mode-locking threshold by ∼20%.

Typical results for the output of the laser are shown in Figure 2.5. The spectrum
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(a) (b)

(c) (d)

Figure 2.5: Output of the laser: a) spectrum, b) interferometric autocorrelation of
the output, c) interferometric autocorrelation of dechirped pulse and
the interferometric autocorrelation of zero-phase Fourier-transform
of the spectrum (inset), d) intensity autocorrelation of the dechirped
pulse.

(Figure 2.5(a)) is qualitatively similar to the simulated spectrum (Figure 2.1(b)) and is

consistent with significant SPM within the cavity. The laser generates ∼1.4-ps chirped

pulses (Figure 2.5(b)), which are dechirped to 170 fs (Figure 2.5(c and d)) with a pair

of diffraction gratings outside the laser. The dechirped pulse duration is within ∼16%

of the Fourier-transform limit (Figure 2.5(c) inset). The interferometric autocorrelation

shows noticeable side-lobes, which arise from the steep sides and structure of the spec-

trum. Nevertheless, these amount to only ∼10% of the pulse energy. The output pulse

energy is ∼2.7 nJ, and after dechirping with lossy gratings the pulse energy is ∼1 nJ.

Pulse energies of 2 nJ could be obtained by dechirping with high-efficiency gratings or

photonic-bandgap fiber. The laser is stable and self-starting. In addition to verifying
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as carefully as possible that the laser is not multi-pulsing, we compared the pulse peak

power to that of a fully-characterized femtosecond laser available in our lab. Within

the experimental uncertainties, the two-photon photocurrent induced by the all-normal-

dispersion laser scales correctly with the nominal peak power, which is ∼5 kW.

The behavior of the laser depends critically on the spectral filter: without it, stable

pulse trains are not generated. By rotating the spectral filter to vary the center wave-

length, either of the sharp spectral features can be suppressed, which may slightly im-

prove the pulse quality. When the spectrum changes, the magnitude of the chirp on the

output pulse can change substantially: the pulse duration varies from approximately 1 to

2 ps. With standard femtosecond Yb-doped fiber lasers, mechanical perturbation of the

fiber extinguishes mode-locking. In the laser described here, we find that it is possible

to touch and move the fiber without disrupting mode-locking, which indicates that NPE

plays a reduced role in pulse-shaping. The simulations (e.g., Figure 2.1) show that the

role of NPE is reduced compared to a laser with a dispersion map, but it is still crucial

to the generation of stable pulses.

2.3.2 Birefringence filter

With a same experimental setup, inserting a birefringent (quartz) plate between polar-

ization sensitive components such as the PBS and the isolator consist a birefringence

filter. The birefringent plate is inserted at ∼Brewster’s angle to minimize the reflection.

The birefringence filter used in this particular experiment has ∼12 nm BW with a quartz

plate with ∼6 mm thickness. Figure 2.6 shows the schematics of the experimental setup.

By adjusting waveplates, stable, self-starting mode-locked operations are obtained.

Unlike the laser with the interference filter which shows limited numbers of modes, this
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Figure 2.6: Schematic of ANDi fiber laser with a birefringence filter: QWP:
quarter-waveplate; HWP: half-waveplate; PBS: polarizing beam split-
ter; WDM: wavelength-division multiplexer; DDL: dispersion delay
line.

laser can generate many different modes even continuously. Figure 2.7 shows contin-

uously evolving modes by adjusting one of the waveplates. The middle column of the

Figure 2.7 shows the corresponding dechirped interferometric ACs while the right col-

umn shows the theoretically calculated interferometric ACs os the zero-phase Fourier-

transform of the spectrum.

The experimental result shows that the pulses can be dechirped quite close to the

Fourier-transform limited pulse (within ∼10 %). The pulse energy is ranged 2∼3 nJ

with the pulse duration varies from 150 to 270 fs. As the pulse evolves continuously due

to the waveplate tuning, the pulse energy, the dechirped pulse duration, and the chirping

follow certain recognizable trends. The details of the trends will be covered in the next

chapter.

It was found that modes from the laser with a birefringence filter has the best match-

ing to numerical simulations owing to its clean predictable spectral filtering curve. For

example, modes presented in Figure 2.7 were quite predictable from numerical simula-
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Figure 2.7: Output of the laser: Left column: spectrum evolution with adjusting
waveplates, Center column: corresponding dechirped interferometric
autocorrelations, Right column: corresponding interferometric auto-
correlation of zero-phase Fourier-transform of the spectrum.

tions even with quantitative agreements in the energy, the dechirped pulse duration, etc.

Furthermore, the flexibility of the birefringence filter is quite attractive for experiments.

The spectral filter BW can be easily adjusted by putting a quartz plate with a different

thickness. By combining quartz plates and polarizers, one can created various combi-

nations of the filter BW and the FSR such as a Lyot or a Solc filter. Because of many

convenient features of the ANDi fiber laser with a birefringence filter, most of the ANDi

laser experiments are with various birefringence filters.
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Figure 2.8: Schematic of ANDi fiber laser with a birefringence fiber loop fil-
ter: QWP: quarter-waveplate; HWP: half-waveplate; PBS: polarizing
beam splitter; WDM: wavelength-division multiplexer; PM: polariza-
tion maintaining; DDL: dispersion delay line; PC: polarization con-
troller.

2.3.3 Birefringence fiber loop filter

A birefringence fiber loop filter is a fiber-formatted birefringence filter. The unique

feature of the fiber integrability is quite attractive for building all-fiber ANDi fiber lasers.

The schematic of the ANDi fiber laser with a birefringence fiber loop filter is shown

in Figure 2.8. Even though the laser cavity still has some bulk optics in the cavity,

replacing bulk optics filters by fiber-formatted filters is a appreciable progress toward

the all-fiber ANDi fiber laser. Other bulk optical components such as a PBS, a isolator,

and waveplates can be conveniently replaced by commercially available fiber-formatted

components.

The cavity consists of ∼40 cm of SMF, a birefringence fiber loop filter, another 2.35

m of SMF, ∼60 cm Yb-doped gain fiber, and ∼1 m of SMF following the gain fiber.

Again, the gain fiber was pumped through a WDM with a ∼350 mW pump power. A
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(c) (d)

Figure 2.9: Output of the laser: a) output 1 spectrum, b) dechirped interferometric
autocorrelation of the output, c) output2 spectrum, d) output spectrum
of the 3% coupler

birefringence loop filter consist of a 50/50 fiber coupler with ∼25 cm of Corning PM

980 in the loop. The measured spectral filter BW is ∼ 4.4 nm. By adjusting the PC,

the lasing center wavelength can be tuned. The total loop length including the PM fiber

segment is ∼1.65 m. Since the pulse travels through the fiber loop, total length of the

fiber that the pulse travel is ∼6 m. The total length of the fiber that the pulse travels in a

round trip gives ∼0.14 ps2 total GVD with ∼33 MHz repetition rate. A little bit deviated

from the previous experimental setups, several more outputs are setup to monitor the

intracavity pulse evolution. The output 2 is setup to monitor the spectrum after the NPE

port. A 3% coupler is attached after the filter to monitor the spectrum after the spectrum

filtering.

Figure 2.9 shows the experimental result of the fiber laser. Output 1 shows a char-
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acteristic spectrum shape of sharp peaks around its edges. The output 1 is dechirped by

an external grating pair to have ∼290 fs pulse duration (Figure 2.9(b)). 44 mW of the

output average power corresponds to ∼1.3 nJ of pulse energy. It is well known that the

mode-locked cavity circulating pulse quality is substantially better than the NPE port

ejected pulse [18]. The output 2 (Figure 2.9(c)), which is the thruput pulse of the NPE

port, exhibits a much cleaner spectrum as predicted. The spectrum after the birefrin-

gence fiber loop filter (Figure 2.9(d)) is the consequence of the narrow spectral filtering

of the output 2 spectrum (Figure 2.9(c))

2.3.4 Er-doped ANDi fiber laser

Meanwhile, an Erbium (Er)-doped fiber laser with only normal dispersion elements has

been reported [19]. This so-called gain-guided soliton fiber laser relies on the limited

bandwidth (BW) of the gain medium for the pulse-shaping. It was an important to step to

increase the pulse energy since the pulse energy is expected to be larger with increasing

net normal cavity dispersion. However, unlike the Yb-doped ANDi fiber lasers, the

gain-guided soliton laser only created picosecond pulses. To create shorter pulses, a

gain-guided soliton Er fiber laser with a dispersion map and large net normal dispersion

(∼0.07 ps2) was created [20]. However, the dechirped pulse duration (∼1 ps) was still

in the picosecond range.

The major difference between the gain-guided soliton fiber lasers and the ANDi fiber

lasers is that there is a strong spectral filtering in ANDi fiber lasers. This motivates in-

vestigation of the role of the spectral filter in Er fiber lasers. By inserting an appropriate

spectral filter within the Er fiber laser, femtosecond dechirped pulses with high pulse

energies are expected. Here we present the result of the femtosecond Er fiber laser with
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Figure 2.10: Output of the laser: a) spectrum, b) interferometric autocorrelation
of the output

a spectral filter at large net normal cavity dispersion (∼0.1 ps2). The laser produces

220-fs pulses after dechirping. These results demonstrate the successful translation of

the CPSF mechanism to Er fiber lasers. The pulse energy is ∼1 nJ, but is expected to

improve significantly with an optimal design.

The experimental schematics is same as Figure 2.6. The fiber lasers consists of ∼12

m of single-mode fiber (SMF) with normal dispersion at 1550 nm, 3m of Er-doped gain

fiber (also with normal dispersion), and another ∼3 m of SMF. Because commercially-

available WDM and collimators are anomalously dispersive at 1550 nm, some short

anomalous dispersion segments are unavoidable. However, the laser has a very weak

dispersion map; the anomalous dispersion segments compensate only ∼10% of the nor-

mal dispersion. The pulse evolution will be essentially that of an ANDi laser. The net

cavity dispersion is ∼0.1 ps2. NPE provides some self-amplitude modulation. A bire-

fringent filter with 15 nm BW is used to implement CPSF, and provides the dominant

self-amplitude modulation. The repetition rate of the laser is 9.9 MHz. By adjusting the

waveplates, stable, self-starting mode-locked operation is obtained.

Figure 2.10 shows the experimental results. 10 mW mode-locked average power

corresponds to ∼1 nJ pulse energy. The spectrum shows the characteristic sharp peaks
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around its edges resembling the ANDi fiber laser modes as expected (Figure 2.10(a)).

The measured dechirped pulse duration is ∼220 fs (Figure 2.10(b)). The interferomet-

ric AC shows noticeable side-lobes, which arise from the steep sides and structure of

the spectrum. The CPSF action of the intracavity spectral filter makes a noticeable im-

provement of the dechirped pulse duration. The net cavity dispersion is larger than in

the gain-guided soliton fiber laser [20], yet this laser successfully creates femtosecond

pulses. The demonstration of femtosecond Er-doped fiber laser operation at large net

cavity dispersion is an important step to achieve femtosecond-duration and high energy

pulses from Er-doped fiber lasers according to the master equation prediction [6].

2.4 Conclusion

In conclusion, we have demonstrated a fiber laser that generates high-quality femtosec-

ond pulses without the use of intracavity dispersion control. The behavior and per-

formance of the laser agree qualitatively with numerical simulations that illustrate the

intended pulse-shaping mechanism by enhanced spectral filtering of chirped pulses in

the cavity. Nevertheless, our picture of this mode-locking process is rudimentary, and

more work will be required to obtain a systematic understanding. Improved performance

should accompany better understanding of this mode-locking process.
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CHAPTER 3

BEHAVIOR OF ANDi FIBER LASERS1

This chapter describes a systematic study of the behavior of ANDi fiber laser. It

is surmised based on a variety of numerical simulations that there are three main laser

parameters which determine the pulse in the ANDi fiber laser. Three main parameters

of the GVD, the nonlinearity and the spectral filter BW. The effect of each parameter is

studied by performing numerical simulations and experiments. It is also discussed how

the ANDi fiber laser can be designed to have optimal performance.

3.1 Introduction

It has become conventional wisdom that the compensation of group velocity dispersion

(GVD) in a laser is prerequisite to the generation of femtosecond pulses. Most mod-

ern femtosecond lasers have dispersion maps, with segments of normal and anomalous

GVD. The net GVD of the cavity can be normal or anomalous. With large net anoma-

lous GVD, soliton-like pulses can be formed as a result of the balance of anomalous

GVD and positive (i.e., self-focusing) nonlinearity. As the net GVD approaches zero,

stretched-pulse operation occurs [2]. A stretched pulse laser has breathing solutions

(dispersion-managed (DM) solitons), and in fiber lasers the pulse energy can be an or-

der of magnitude higher than in a soliton laser.

Excessive nonlinear phase shift accumulated by the pulse as it traverses the cav-

ity generally limits the pulse energy. Theoretically, mode-locked laser operation with

large net normal GVD is expected to have stable high-energy pulses [3]. Proctor et al.

experimentally verified the master-equation prediction of highly-chirped pulses from a

1Most of the results presented in this chapter have been published in Ref [1]
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solid-state laser with net normal GVD [4]. Pulse-shaping in such a laser is based on

spectral filtering of the chirped pulse, which cuts off the temporal wings of the pulse.

In recent years, researchers have actively investigated mode-locked laser operations

with large net normal GVD to achieve higher pulse energies directly from an oscillator.

Notable among these are the self-similar laser [5] and the so-called chirped pulse oscil-

lator (CPO) [6], which is an optimized version of the operation reported by Proctor et al.

[4]. The self-similar laser produces highly-chirped parabolic pulses that propagate self-

similarly in the laser cavity. Strong temporal breathing arises from the dispersion map

and nonlinear pulse evolution. A CPO generates highly-chirped pulses with negligible

breathing due to the much weaker dispersion map. Both self-similar and CPO lasers

employ dispersion maps to successfully generate high pulse energies with femtosecond

dechirped pulse durations [6, 7, 8, 9, 10]. In all cases, some self-amplitude modulation

is needed to start and stabilize the pulses. CPO has been used to referred to solid-state

lasers. The feature that all CPOs have in common is the weak temporal breathing (i.e.,

the pulse is approximately constant as it traverses the cavity), which contrasts with the

fiber lasers with clear pulse evolution.

In the design of high-energy femtosecond lasers, the combination of anomalous

GVD and positive nonlinearity in a given segment of the cavity should be avoided,

as the tendency of a pulse to form a soliton in that segment may limit the pulse energy.

For fiber lasers, it is technically challenging to create a dispersion map at wavelengths

where the fiber has normal GVD. For single-mode fiber (SMF) this implies wavelengths

below 1.3 µm, which includes the 1-µm emission band of ytterbium (Yb)-doped fiber.

Microstructure fibers can provide anomalous dispersion with negligible nonlinearity, but

for technical reasons the resulting lasers do not perform at the level of lasers that em-

ploy bulk diffraction gratings for dispersion control [11]. The bulk optics detract sub-
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stantially from the integrated and waveguide nature of fiber lasers, and there is therefore

much motivation to eliminate them from the design.

Of course, dispersion control is not required for saturable-absorber mode-locking

and picosecond pulse durations. Under these conditions, dispersion and nonlinear phase

modulation do not contribute appreciably to pulse-shaping. The question we address

here is whether self-amplitude modulation can play a larger role in shaping femtosecond

pulses, and even stabilize high-energy pulses without a dispersion map in the cavity. The

approach is to extend the pulse-shaping at normal GVD observed by Proctor et al. to

fiber lasers. The cavity dispersion will be two to three orders of magnitude larger than

that of solid-state lasers, and as mentioned, we want to eliminate the anomalous-GVD

segment entirely.

One step in this direction was the report by Zhao et al. [12] of so-called gain-guided

soliton formation in a laser without a dispersion map. Theoretically, pulse-shaping in

this laser is qualitatively similar to that in a CPO [4]. However, even the theoretical

(numerical) results showed that pulse-shaping is dominated by self-amplitude modu-

lation from nonlinear polarization evolution (NPE), rather than spectral filtering of a

highly-chirped pulse [13]. Furthermore, pulse durations larger than 15 ps were obtained

experimentally, and dispersion and nonlinear effects should be weak with such pulse

durations. Buckley et al. demonstrated that a spectral filter could stabilize high-energy

pulses in a Yb-doped fiber laser with a dispersion map and large net GVD, to produce

peak powers >100 kW from an oscillator[14]. These results motivated consideration of

the possibility that the spectral filter might provide enough self-amplitude modulation

in a suitably-designed cavity to allow removal of the anomalous-GVD segment.

Recently, Chong et al. [15] reported a mode-locked Yb fiber laser in which pulse-

shaping can be dominated by spectral filtering of a highly-chirped pulse in the cavity.
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The cavity contained no components with anomalous GVD, and the output pulse could

be dechirped to 170 fs duration. This all-normal-dispersion (ANDi) laser exhibits a

variety of pulse shapes and evolutions, which distinguish it from prior mode-locked

lasers [16]. The pulse energy from an ANDi laser has been scaled to the 20-nJ level

[17], and higher energies may be possible.

Here we provide a more systematic description of the behavior and performance of

ANDi lasers than was possible in the brief initial report [15]. A master-equation analysis

[3] of this type of laser was reported [18], but it is naturally limited to static solutions,

and it fails to predict the variety of operating modes such as the characteristic spectral

shapes [15]. Extensive numerical simulations show that the intracavity pulse evolution

and characteristics are determined by three main parameters: the nonlinear phase shift

that the pulse experiences in a round trip (ΦNL), the spectral filter bandwidth (BW), and

the GVD of the cavity. These simulations are described in Section 2 of the paper. The

effect of each parameter is discussed separately, and in summary the trends exhibit some

universal features. Similarities and differences between the ANDi fiber laser, CPO, and

self-similar lasers are also discussed. Experimental results are presented in Section 3.

Section 4 contains a discussion of pulse-shaping in ANDi lasers, and Section 5 outlines

some practically-useful features of ANDi fiber lasers. Finally, conclusions are presented

in Section 6.
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3.2 Behavior of ANDi Fiber Lasers : Theory

3.2.1 Pulse-Shaping Mechanism

The pulse-shaping mechanism in the ANDi fiber laser can be understood by examination

of the pulse evolution in a typical numerically-simulated example. The simulation is

based on the experimental setup in [15]. The simulated laser consists of a long segment

of SMF (3 m), a Yb-doped gain fiber (60 cm), and one more piece of SMF (1 m) in

order. The pulse propagation within each section is modeled by the appropriate terms

of the following equation:

∂A(z, τ)
∂z

+ i
β2

2
∂2A(z, τ)
∂τ2 = iγ|A(z, τ)|2A(z, τ) + g(Epulse)A(z, τ). (3.1)

A(z, τ) is the electric filed envelope, while z is the propagation distance and τ is the pulse

local time. The dispersion and nonlinear coefficients of SMF used in the simulation are

β2 = 230fs2/cm and γ = 0.0047(W m)−1. g(Epulse) is the net gain function for the Yb-

doped gain fiber. The pulse energy is given by Epulse =
∫ TR/2

−TR/2
|A(z, τ)|2dτ where TR is the

cavity round-trip time.

Gain saturation is modeled according to

g(Epulse) =
go

1 + Epulse/Esat
. (3.2)

go corresponds to ∼ 30dB of small-signal gain. A Lorentzian gain shape with ∼100

nm BW is assumed. The gain saturation energy Esat is set according to the pump

power. In the simulation, Esat is varied from 0.25 nJ to 6 nJ. The fiber sections are
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followed by an ideal saturable absorber with monotonically-increasing transmission

T = 1− ło/[1 + P(τ)/Psat] where lo=0.7 is the unsaturated loss, P(τ) is the instantaneous

pulse power and Psat is the saturation power. Details of the mode-locked spectrum can

be changed by choosing different Psat but overall characteristics do not change substan-

tially. Once the transmission function deviates severely from the ideal one (e.g., the

sinusoidal transmission curve of nonlinear polarization evolution (NPE)) the simulation

starts to show dramatically different results. We decided to eliminate the detailed effects

of the saturable absorber, in order to focus on the effects of other parameters. To this

end, Psat is adjusted within the range (0.1 - 2.4 kW) according to the pulse energy, so

that the same pulse shape but with different peak powers experience the same point on

the saturable absorber transmission curve.

The initial simulation work presented by Chong et al. assumed that the gain BW

could be varied, and showed that artificially narrow values of the gain BW caused

enough spectral filtering action for mode-locking [15]. In the work presented here, a

Gaussian spectral filter is placed after the saturable absorber in the simulation to accu-

rately model the real laser. The spectral filter BW is varied from 8 nm to 25 nm in the

simulation. The output is coupled out between the saturable absorber and the spectral

filter with a ∼70% coupling ratio. Pulse evolution in each segment is solved numerically

with a split-step Fourier method, until the laser reaches a steady state [19].

Figure 3.1 shows how the power spectrum typically evolves in an ANDi fiber laser.

After traversing the spectral filter, the spectrum shows steep edges and a Gaussian-

shaped top that follows the filter transmission curve. Gentle spectral broadening is

observed in the first SMF and the gain fiber. After the gain fiber amplifies the pulse,

the enhanced peak power in the SMF induces a substantial nonlinear phase shift, which

produces sharp peaks at the edges of the spectrum. The spectral filter, and to a lesser
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Figure 3.1: Typical numerical simulation result: (a) spectrum at the beginning
of the first SMF, (b) spectrum at the beginning of the gain fiber, (c)
spectrum at the end of the gain fiber, (d) spectrum at the end of the
second SMF, (e) output spectrum; DDL: dispersion delay line.

degree the saturable absorber, cut off the peaks and return the spectrum to its starting

shape.

The corresponding time-domain evolution is shown in Figure 3.2. The typical GVD

of an ANDi fiber laser is roughly an order of magnitude higher than that of a fiber

laser with a dispersion map. Because of the large normal GVD, the pulse chirp is large

and positive throughout the cavity. The pulse duration increases monotonically in the

segments of SMF. Self-amplitude modulation occurs in the saturable absorber and the

spectral filter, but the effect of the spectral filter dominates. Therefore, the main pulse-

shaping mechanism of an ANDi fiber laser can be described as chirped-pulse spectral

filtering.
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Figure 3.2: Time domain evolution of the numerical simulation result in Figure 1;
SA: saturable absorber, SF: spectral filter.

3.2.2 Variation of Laser Parameters

From an extensive set of simulations performed with a wide range of conditions, we

conclude that there are three main parameters that control the intracavity pulse evolution

and characteristics. These are ΦNL, the spectral filter BW, and GVD. In this section, the

effect of each parameter will be discussed based on simulation results. Interestingly,

variation of any of these three parameters produces qualitatively similar trends in the

behavior and performance.

The reference simulation condition is as follows: The fiber segment consists of 3 m

of SMF, 60 cm of gain fiber, and 1 m of SMF. The resulting GVD is ∼0.1 ps2. All fibers

have 6-µm core diameter. The spectral filter has a Gaussian transmission function with 8

nm BW. Again, the saturable absorber has a monotonically increasing transfer function.

70% of the pulse energy is coupled out of the cavity right after the saturable absorber.

The pulse energy is reduced by an additional 10% to account for other losses.
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(a) (b) (d)(c)

Figure 3.3: Output spectrum with ΦNL: (a) ∼1π, (b) ∼4π, (c) ∼7π, (d) ∼16π.

Nonlinear Phase Shifts

The performance of the ANDi fiber laser changes extensively as ΦNL varies. To inves-

tigate this effect, the pump power was increased gradually from the reference condition

while holding the spectral filter BW and the GVD constant. In reality, increasing the

pump power is not the only way to enhance ΦNL. For example, ΦNL can also be varied

by adjusting the output coupling ratio or the length of the SMF after the gain. However,

the numerical study shows that any parameter (e.g., output coupling ratio) that alters the

value of ΦNL produces essentially the same result. The temporal profile does not show

clear trends, while the output spectra clearly display a dramatic variation. Figure 3.3

shows the trend as ΦNL increases.

The output spectral BW increases with ΦNL. For low ΦNL, the spectrum appears

similar to the parabolic spectrum of a self-similar laser (Figure 3.3(a)) [5]. As ΦNL in-

creases, the spectrum broadens while developing sharp peaks around its edges (Figure

3.3(b)). These features sharpen as ΦNL increases up to ∼7π (Figure 3.3(c)). With larger

ΦNL, the spectrum broadens further and eventually develops structure or fringes (Fig-

ure 3.3(d)). The output spectral BW with ΦNL ∼16π is ∼6 times larger than that with

ΦNL ∼1π. Even with ΦNL as large as ∼10π or more, the output pulse can be dechirped

very close to the transform limit. For example, the pulse with ΦNL ∼16π (7π) can be

dechirped with a linear dispersive delay to only ∼20% (10%) beyond the transform limit.
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(a) (b)

(c) (d)

Figure 3.4: Laser performance vs. ΦNL: (a) pulse energy, (b) breathing ratio, (c)
dechirped pulse duration, (d) chirp.

The dependence of the laser output parameters on ΦNL is summarized in Figure

3.4. The pulse energy increases monotonically (Figure 3.4(a)). Figure 3.4(b) shows the

breathing ratio, which is defined as the ratio of maximum and minimum pulse durations

in the cavity. The breathing ratio increases from ∼1 to ∼4 as ΦNL increases. The tempo-

ral breathing is large compared to that in a solid-state CPO, but small compared to that

in a similariton laser. The dependence on ΦNL is related to the ratio of the output spectral

BW to the spectral filter BW. When the output spectrum is narrower than or equal to the

spectral filter BW, the breathing ratio is ∼1, as in a CPO. The spectral amplitude mod-

ulation is larger when the output spectral BW is much larger than the spectral filtering

BW (e.g. ∼5 times larger in Figure 3.3(d)). Since the pulse is highly chirped, a strong

spectral amplitude modulation converts into a strong time domain amplitude modulation

and thereby a large breathing ratio.
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(a) (b) (c) (d)

Figure 3.5: Output spectrum with spectral filter BW: (a) 25 nm, (b) 15 nm, (c) 12
nm, (d) 8 nm.

The dechirped pulse duration is inversely proportional to the spectral BW (Figure

3.4(c)). Here we define the pulse chirp as the magnitude of anomalous GVD required to

dechirp the output pulse to its maximum peak power. Interestingly, the chirp decreases

as ΦNL increases. This indicates that the accumulation of nonlinear phase has some

dechirping action against the normal GVD of the fiber.

Spectral Filter Bandwidth

The second laser parameter that can alter the laser performance noticeably is the spectral

filter BW. To survey the effect of the spectral filter BW, simulations were performed with

increasing filter BW, starting from the condition used in Figure 3.3(d). Other parameters,

such as ΦNL and GVD were kept constant.

Figure 3.5 shows the variation of the output spectrum while the spectral filter BW is

varied. Interestingly enough, reduction of the filter BW produces the same qualitative

trend as increasing ΦNL. (Compare Figs. 3.3 and 3.5.)

The variation of the output pulse parameters vs. the spectral filter BW is shown in

Figure 3.6. The output pulse energy is excluded because the pulse energy does not vary

much with fixed pump power and output coupling ratio. The breathing ratio again covers

the range from ∼1 to ∼4. The dechirped pulse duration and the pulse chirp increase as
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(a)
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Figure 3.6: Laser performance vs. spectral filter BW: (a) breathing ratio, (b)
dechirped pulse duration, (c) chirp.

the spectral filter increases along with decreasing output spectral BW.

Group Velocity Dispersion

The last laser parameter to be investigated is the GVD. Numerical simulations were per-

formed with increasing length of the first segment of SMF, starting from the condition

used in Figure 3.3(d). The GVD was varied from ∼0.1 ps2 to ∼0.5 ps2 . Other parame-

ters such as ΦNL and the spectral filter BW were again held constant. Figure 3.7 shows

the output spectrum as the GVD decreases. We see that decreasing the GVD produces a

trend that is similar to those obtained by increasing the ΦNL or decreasing the filter BW.

The output energy is again omitted because it is nearly constant.
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(a) (d)(c)(b)

Figure 3.7: Output spectrum with GVD: (a) 0.52 ps2, (b) 0.31 ps2, (c) 0.24 ps2,
(d) 0.10 ps2.

(a)

(b) (c)

Figure 3.8: Laser performance vs. GVD: (a) breathing ratio, (b) dechirped pulse
duration, (c) chirp.

The variation of the breathing ratio, the dechirped pulse duration, and pulse chirp are

shown in Figure 3.8. The chirp increases rapidly with GVD. Other output parameters

show trends similar to those observed by variation of the parameters discussed above.

Figure 3.8(b) shows that shorter pulses are obtained as the GVD gets close to zero.

This trend matches the prediction of the master equation in its range of validity [3].
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Figure 3.9: Output spectrum vs. laser parameters.

3.2.3 Summary of the Effects of Laser Parameters

The results of this section are summarized in Figure 3.9. The output spectral shape

evolves gradually from the parabolic-top spectrum that is a signature of self-similar

pulse evolution (Figure 3.9A) to the fringed and broadened spectrum (Figure 3.9B) with

decreasing spectral filter BW, decreasing GVD, or increasing ΦNL. Of course, various

combinations of three parameters can deliver various spectrum shapes with different

characteristics. However, the shapes will still fall between spectra A and B in Figure

3.9.

Some insight also comes from looking at the temporal evolution when the breathing

ratio reaches its extreme values. Other evolutions with intermediate breathing ratios

will fall between these. Figure 3.10 shows the temporal evolutions that correspond to

the spectra labeled A and B in Figure 3.9. The parabolic spectrum exhibits very little

temporal or spectral breathing (Figure 3.10A). In that sense, the pulse propagation is

similar to that in a CPO. However, there are fundamental differences between the ANDi

fiber laser and a solid-state CPO. The ANDi fiber laser has GVD roughly ∼103 times

larger than that of the solid-state CPO. Furthermore, the ANDi fiber laser does not have

any anomalous dispersion component, while the solid-state CPO comprises a dispersion

map.
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Figure 3.10: Temporal evolution of two extreme cases; top: temporal evolution
of Figure 9A and 9B, middle: spectra of Figure 9A mode at various
locations, bottom: spectra of Figure 9B mode at various locations.

Meanwhile, the other extreme case (Figure 3.10B) of a fringed nonlinearly-

broadened spectrum has a distinct evolution. The temporal breathing ratio is ∼4 and

the spectrum changes significantly. The temporal evolution resembles that of the self-

similar laser, where the pulse duration increases monotonically within the fiber and then

decreases in the dispersive delay line with a noticeable breathing ratio [5]. The temporal

evolution of Figure 3.10B is qualitatively the same as that of the self-similar laser. A

major difference is that the ANDi fiber laser’s self-amplitude modulation occurs mainly

in the spectral filter. Furthermore, the output spectrum of the ANDi fiber laser in Figure

3.10B is not parabolic at all.
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3.2.4 Design of ANDi lasers

It is desirable to convert the observations of this section into the design of ANDi lasers

with specific performance parameters. Although explicit design formulas cannot be pro-

vided, we can give some guidelines and an overall algorithm. The GVD is the decisive

parameter for mode-locked spectral BW and hence the dechirped pulse duration. As the

GVD increases, the output spectral BW decreases significantly. In practice, the GVD

may be decided by the desired repetition rate. Once the GVD is fixed, one can choose

an appropriate spectral filter. The choice of a proper spectral filter BW is critical for the

stability and the performance of the laser. Roughly, the filter BW should be chosen to

match the expected pulse BW. A narrower filter will tend to generate a broad, structured

output spectrum such as spectrum B in Figure 3.9. As the filter BW increases, the output

spectrum will become cleaner and narrower. If the filter BW is too large, the filter will

not contribute to pulse-shaping and stable operation becomes difficult to achieve.

Once the GVD and the spectral filter BW are determined, ΦNL can be optimized

easily by adjusting the pump power. By choosing the three main laser parameters ap-

propriately, the output spectral BW and therefore the pulse energy can be scalable. For

example, spectra in Figure 3.5(a) and Figure 3.3(a) have similar shapes, but the spec-

trum in Figure 3.5(a) has ∼3 times larger BW, with a ∼2 times shorter dechirped pulse

duration and a ∼17 times larger pulse energy. Remarkably, only the spectral filter BW

and the pump power were adjusted to scale the energy over the stated range.

For example, the ANDi fiber laser in [15] with GVD ∼0.1 ps2 was mode-locked

optimally with ∼10 nm spectral filter BW. Pump power was set at ∼350 mW to produce

∼3 nJ pulse energy. With a filter BW of ∼8 nm, mode-locking was easy but the output

spectrum was prone to structure. Meanwhile, with a ∼15 nm filter, mode-locking was

difficult. In practice, we find it useful to start with a narrow spectral filter BW to obtain
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stable mode-locking. Then we increase the BW to obtain a desired performance. The

design rationale described here can provide approximate values of the lasers parameters.

For more detailed and quantitative design, numerical simulations are required.

3.3 Experimental

Figure 3.11 shows the experimental setup for a Yb-doped ANDi fiber laser. The exper-

imental setup matched the simulated arrangement except for the saturable absorber and

the spectral filter. In the experiments, the NPE port takes the role of a saturable absorber.

NPE constitutes an approximately sinusoidal intensity transfer function, while the sat-

urable absorber in the simulation was assumed to be an ideal monotonically increasing

transfer function. Therefore, a pulse with high enough peak power may experience sat-

urable gain due to the sinusoidal transfer function of the NPE. The output pulse is taken

from the NPE port. As a result, the output coupling depends on the NPE parameters,

while it was assumed to be constant in the simulation. A birefringent plate between

polarization-dependent components constitutes a spectral filter. The birefringent plate

was inserted roughly at Brewster’s angle to minimize loss. The birefringent filter used in

the experimental laser has a sinusoidal spectral transfer function, while it was assumed

to be a perfect Gaussian in the simulation. The output pulse was dechirped by a grating

pair external to the cavity.

Independent control of the parameters of a laser is generally challenging, and two of

the three key parameters are difficult to control individually in the ANDi laser. The spec-

tral filter BW can be changed by inserting a birefringent plate with a different thickness.

However, insertion of a new component within a cavity may introduce perturbations in

the laser efficiency and therefore fluctuations in ΦNL. Variation of the GVD by cutting

68



output

Yb-doped

fiber

PBSisolator

WDM

HWP

birefringent

plate QWPQWP
collimator collimator

980nm

pump

SMF SMF

DDL

Figure 3.11: Schematic of the experimental setup; PBS: polarization beam split-
ter; HWP: half waveplate; QWP: quarter waveplate; WDM: wave-
length division multiplexer; DDL: dispersion delay line.

or splicing a desired length of a SMF may cause the same problem. Changing the length

of the cavity influences not only the GVD, but also the NPE characteristics, which will

eventually perturb the value of ΦNL. With the given experimental setup, the only param-

eter that can be altered continuously without seriously affecting other parameters is ΦNL,

which can be adjusted by controlling the pump power. Controlling the output coupling

ratio at the NPE port by adjusting the waveplates also affects ΦNL significantly.

A variety of stable mode-locked states can be observed by adjusting the orienta-

tion of the waveplates. By adjusting the pump power and the waveplates, ΦNL can be

increased gradually. The spectra recorded for increasing ΦNL are presented in Figure

3.12 along with the measured autocorrelations of the dechirped pulses. The range of

spectral shapes agrees fairly well with the numerical results shown in Section 2. The

sharp peaks at the edges of the spectrum are a signature of chirped-pulse spectral fil-

tering; such spectra have not been observed systematically in any prior mode-locked

laser to our knowledge. The steep sides and sharp peaks in the spectra imply that the

temporal profiles will have some secondary structure, and this is observed in the auto-
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Figure 3.12: Experimental results; Top: simulated output spectrum with ΦNL: (a)
∼1π, (b) ∼3π, (c) ∼4π, (d) ∼8π; middle: experimental output spec-
trum with approximated ΦNL: (e) ∼1π, (f) ∼3π, (g) ∼4π, (h) ∼8π;
bottom: corresponding experimental dechirped interferometric ACs.

correlations (AC). The secondary lobes in the time domain contain from ∼4% (Figure

3.12(e)) to ∼7% (Figure 3.12(g)) of the pulse energy. The highly-structured spectra

(Figure 3.12(h)) yield small secondary pulses ∼3 ps from the main pulse as verified by

the AC trace.

To investigate the scaling of the important pulse parameters with ΦNL, we recorded

the laser performance at different pulse energies, and then estimated the corresponding

values of ΦNL. We assume for simplicity that the temporal profile is constant in the three

fiber segments, and approximate the nonlinear phase as

ΦNLapprox =

3∑

n=1

γn(Ipeak)nLn. (3.3)
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(b)

Figure 3.13: Experimental and numerically simulated laser performance vs. ap-
proximated ΦNL; dots: experiment, lines: numerical simulation; (a)
pulse energy before the NPE port, (b) breathing ratio, (c) dechirped
pulse duration, (d) chirp.

The peak power in the gain fiber and SMF following the gain fiber was assumed to

be equal to that before the NPE port. The peak power in the SMF before the gain is

approximated after the spectral filtering and attenuating the peak power according to the

measured output coupling ratio. The value of ΦNL for the simulated pulse is calculated

by applying the same equation for the pulse at each step used in the split-step Fourier

method. The measured pulse parameters are plotted vs. the resulting values of ΦNL in

Figure 3.13.

Given the uncertainty in the estimation of the ΦNL, the apparently excellent quan-

titative agreement between the measured and simulated results should be considered

fortuitous. The important point is that the measured trends in all four parameters agree
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with those of the numerical simulations. As a result, we conclude that we have a satis-

factory understanding of pulse-shaping in ANDi lasers.

The numerical simulations that model the NPE as a monotonic saturable absorber

and the filter as a gaussian transmission account for all of the modes of operation of

the ANDi lasers presented here. We do find in experiments that the laser can produce

a limited number of modes with spectral shapes that are not matched well by these

simulations. For example, a very highly chirped mode-locked operation with a narrow

(∼2 nm) Lorentzian-shaped spectrum is experimentally observed. However, it is not

predicted by the current model. A more-sophisticated model of the NPE that explicitly

includes the two polarization components with cross-phase modulation accounts not

only for those pulses but also for modes in Figure 3.12. We will not discuss those further

here, as the purpose of this paper is to lay out the main features of ANDi lasers that

are independent of the implementation of the saturable absorber, rather than to discuss

modes of operation that are specific to NPE. A systematic investigation of the saturable

absorber and the spectral filter will be conducted in the near future.

3.4 Discussion

It is generally useful to classify mode-locking regimes that involve nonlinear phase mod-

ulations according to the net cavity GVD, as in Figure 3.14. With only anomalous dis-

persion, soliton formation can occur for any value of the GVD, at least in principle.

With a dispersion map, the solutions are generally DM solitons. For large net anoma-

lous GVD, the pulses approximate static solitons, but as the net GVD approaches zero

the solutions breathe. These regimes are based on some balance of anomalous GVD and

positive nonlinearity. DM solitons can even exist at small net normal GVD. In soliton-
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Figure 3.14: Laser operating regimes according to the net cavity dispersion and
the existence of a dispersion map.

like pulse-shaping, self-amplitude modulations mostly play a secondary role, namely

starting and stabilizing the mode-locking. As the net cavity GVD changes sign from

anomalous to normal, different pulse-shaping mechanisms take over. With a dispersion

map, self-similar operation can appear. Finally, stable pulse-shaping can occur with

normal cavity GVD without a dispersion map in the ANDi laser.

The mode-locking regimes at large normal GVD rely on dissipative processes such

as spectral filtering to fundamentally shape the pulse, not just to start and stabilize it.

Stable pulses that form due to the balance of GVD, nonlinearity, and dissipative pro-

cesses such as temporal and spectral amplitude modulation are referred to as dissipative

solitons. The complex quintic Ginzburg-Landau equation (CQGLE) is used to model the

average pulse in mode-locked lasers. We have recently found that a generalization of the

Hocking and Stewartson solution [21], which is an exact analytic solution of the CQ-

GLE, predicts the pulse shapes and trends observed experimentally [20]. Pulse-shaping

in the ANDi laser thus seems to exhibit the essence of dissipative soliton formation, and

we will pursue this connection in the future.

We can set the ANDi laser in context with related devices such as the CPO and gain-

guided soliton laser. As mentioned above, these all exploit pulse-shaping processes that
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are conceptually and qualitatively the same as those described by the master equation

[3] and first observed by Proctor et al. in a Ti:sapphire laser [4]. However, there are

clear differences in operation and implementation. Fundamentally, the pulse evolutions

differ. All work to date on CPOs has considered only static solutions, while the tem-

poral breathing ratio varies from ∼1 to ∼4 in ANDi lasers, as shown in Figure 3.10.

CPOs have been modeled with the master-equation theory, which cannot account for

the spectra with sharp peaks (e.g. Figure 3.12 (b)-(d)). Kalashnikov et al. calculate

so-called M-shape spectra, which bear some resemblance to the spectra produced by

the ANDi lasers [22]. Nevertheless, the origin of the spectral shape is clearly different.

Kalashnikov et al. had to add relatively large fourth-order dispersion to create the M-

shape spectrum. In contrast, the simulations described here were performed with zero

fourth-order dispersion, so the spectral shape is solely due to the GVD, ΦNL, and the

spectral filtering effect. Spectral filtering plays a role in pulse-shaping in CPOs and in

gain-guided soliton formation [12]. The relatively weak and constant spectral filtering

action of the gain limits the range of mode-locked operations. As a consequence, the

gain-guided soliton laser tends to exhibit the mode presented in Figure 3.9A, which oc-

curs with weak spectral filtering and relatively low ΦNL [12, 13]. The ANDi lasers are

the first to include a controllable filter and to optimize the performance with respect to

the filter parameters. Finally, CPOs to date have been constructed experimentally with

elements that provide anomalous GVD, such as prism pairs and chirped mirrors. The

ANDi laser has no components with anomalous GVD. Quantitatively, the cavity disper-

sion is 2-3 orders of magnitude larger in the fiber laser, simply because the laser contains

meters of fiber, compared to ∼1 cm of gain crystal in a solid-state CPO.
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3.5 Analytic theory of ANDi fiber lasers

This section describes the analytic theory for ANDi fiber lasers briefly. It is found that

the dissipative solitons of CQGLE match the pulses in the ANDi fiber lasers. This

is the first decisive demonstration of dissipative solitons in a fiber system with strong

dissipative processes such as a strong spectral filtering. The demonstration of dissipative

solitons of CQGLE in a laser cavity shows that ANDi fiber lasers can be research tools

for dissipative solitons of the Ginzburg-Landau equations. The theoretical work is done

by Will Renninger in collaboration with Andy Chong.

A dissipative soliton is a localized structures which exists for an extended period of

time, even though parts of the structure experience gain and loss of energy and /or mass

[23]. Again as described in chapter 1, the fiber lasers have been conventionally modeled

by static dissipative soliton solutions (Equation 1.13) of the CGLE which is traditionally

referred as the master equation (Equation 1.12) [3]. Of course, the first natural attempt

is to model the ANDi laser with the CGLE. However, the CGLE solutions failed to

model a characteristic spectrum with sharp peaks around its edges. The solution of the

CGLE is a chirped hyper-secant (Equation 1.13). As the chirp increases its magnitude

in Equation 1.13, the corresponding spectrum becomes rectangular [4] but characteristic

sharp spectral peaks do not appear at any chirp value. In contrast, it was found that a

CQGLE, which is a combination of a real quintic saturable absorbing term and the

CGLE, is more appropriate model to ANDi fiber lasers. By adding a quintic saturable

absorbing term, a CQGLE is obtained (Equation 3.4).

∂A
∂z

= gA + (
1
Ω
− i

D
2

)
∂2A
∂t2 + (α + iγ)|A|2A + δ|A|4A. (3.4)

In Equation 3.4, all coefficients are averaged parameters that the pulse experiences
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in a round trip of the cavity. g is the net gain which is the combination of the gain from

the gain fiber and the loss due to the laser output coupling. Ω is related to the spectral

amplitude modulation such as the gain BW or the intracavity spectral filter. α is the

cubic intensity dependent amplitude modulation term which is related to the SA. δ is the

freshly added quintic amplitude modulation term. The general solution of Equation 3.4

is not known. A particular solution is given in Equation 3.5.

A[t, z] =

√
Ao

cosh ( t
τ
) + B

e−i β2 ln (cosh ( t
τ )+B)+iθz. (3.5)

The most important parameter which governs the pulse character is the parameter

B. For |B| <1 the pulse has an temporal profile close to a hyper-secant profile. As

B >1 increasing in the positive direction, the pulse becomes more and more rectangular

with a flatted top. For the range -1 < B < 1, the spectrum exhibits a variety of shapes

resembling the spectra from ANDi fiber lasers (Figure 3.15).

To observe dissipative soliton solutions of the CQGLE in a fiber laser, a experimental

setup in Figure 2.6 is used. In the experiment, a variety of modes are obtained by

adjusting the NPE port and the pump power. By carefully adjusting the pump power

and waveplates, modes resembling the analytic solutions in Figure 3.15 are found.

Comparing Figure 3.15 and 3.16 indicates that qualitatively the CQGLE is quite

successful to model such a laser. The strong qualitative agreement between the analytic

solutions and the experimental results suggest that the pulse shaping in the ANDi fiber

laser can be appropriately modeled by the CQGLE. The modeling of the ANDi laser

with CQGLE is quite beneficial not only for understanding the normal dispersion laser

behavior but also for designing fiber lasers with a desired performance. Furthermore,

the successful demonstration of dissipative solitons in a fiber system is quite significant
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Figure 3.15: Pulse solutions categorized by the value B. Top: temporal profiles,
Middle: representative spectral shapes for the indicated values of B,
Bottom: corresponding ACs of the respective dechirped analytical
solutions. The intensity profile is shown for B=35. From [20]
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Figure 3.16: Top: representative experimental spectra corresponding to the the-
oretical pulses in Figure 3.15, Bottom: ACs for the corresponding
dechirped pulses. The rightmost pulse is the respective output inten-
sity profile. From [20]
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scientifically.

3.6 Useful Features of ANDi Fiber Lasers

ANDi fiber lasers have some practically-useful features, in addition to the immediate

advantage of removal of the anomalous-dispersion segment. One remarkable feature

of the ANDi fiber laser is its continuous tunability without losing mode-locking. It is

quite possible to go continuously among the spectra of Figure 3.12 without losing mode-

locking, by rotating the waveplates in a laser. In the given experimental setup in Figure

3.11 but with 12 nm spectral filter BW, the dechirped pulse duration can be continuously

tuned from ∼270 fs to ∼150 fs.

The pulse chirp also can be tuned continuously. Experimentally, the chirp can be

varied controllably and continuously over the wide range from ∼0.44 ps2 to ∼0.14 ps2.

High pulse energy lasers usually produce chirped pulses, which can be dechirped ex-

ternally to the laser. In most cases, the dispersive delay is designed to be flexible to

accommodate the unknown chirp of the laser output. The situation can be reversed with

ANDi fiber lasers: the chirping can be tuned to generate transform-limited pulses after

dechirping in a fixed dispersive delay. The tunable chirp will be a practical advantage

for optical systems that include components with fixed GVD such as fiber Bragg grat-

ings, volume Bragg gratings, and photonic crystal fibers. The tunable pulse chirp can be

used as an additional degree of freedom in a chirped-pulse amplifier, e.g.

Finally, the center wavelength can be tuned easily by adjusting the spectral filter

center wavelength. Experimentally, the center wavelength is tunable with ∼20 nm range,

which is close to the free spectral range of the birefringent filter. While the center

wavelength is tuned, the mode-locking is sustained without perturbing the pulse shape.
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Figure 3.17: Schematic of the experimental setup with two output ports; PBS: po-
larization beam splitter; HWP: half waveplate; QWP: quarter wave-
plate; WDM: wavelength division multiplexer; DDL: dispersion de-
lay line.

Mode-locked pulses with noticeable temporal side lobes may not be suitable for

applications demanding clean pulses. One can obtain better pulse quality (sometimes

with tradeoffs in pulse energy and duration) by taking the output at different points in

the cavity. For example, the circulating pulse in a soliton laser is cleaner than the pulse

ejected at an NPE port [24]. Figure 3.17 shows an experimental setup to demonstrate the

improvement of pulse quality by coupling out at different cavity locations. Waveplates

before PBS 2 are solely to adjust the output 2 coupling ratio. The spectral filter BW is

set to 12 nm.

The waveplates were adjusted to optimize the pulse energy at output 2. Figure 3.18

demonstrates that a cleaner pulse can be obtained after the NPE port. The pulse from

the NPE output (output 1) has a sharply-peaked spectrum with significant major side

lobes after dechirping (Figure 3.18(a),(b)). By coupling the laser output right after the

NPE port, clean pulses are obtained. The spectrum and the dechirped interferometric

AC (Figure 3.18(c),(d)) demonstrate the dramatic improvement. Output 2 produced 3-
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(d)(c)

(b)(a)

Figure 3.18: Experimental result of the laser with two output ports; output 1: (a)
spectrum, (b) dechirped interferometric AC; output 2: (c) spectrum,
(d) dechirped interferometric AC.

nJ that could be dechirped to ∼150 fs duration. The pulse energy was sacrificed a bit

since the NPE ejected pulse (output 1) still contained ∼1 nJ energy. In this case, the

”pulse” from output 1 is probably useless for most applications, and really appears to

be the interference of the two wave packets that make up the spectrum. We chose this

example simply to illustrate the flexibility in pule shape that is available with this kind

of laser.
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3.7 Conclusion

The results of a systematic numerical and experimental study of all-normal dispersion

femtosecond fiber lasers have been presented. A key contribution to pulse-shaping

in these lasers arises from the spectral filter, which converts frequency chirp to self-

amplitude modulation. The behavior and performance of the lasers with variations in

the key parameters have been summarized. In contrast to most modern femtosecond

lasers, dissipative processes such as the spectral filtering can play a crucial role in pulse

formation. The ANDi fiber laser can support a wide variety of pulse shapes and evolu-

tions, which include the CPO and the self-similar laser as limiting cases. The ANDi fiber

laser is a robust pulse source capable of high-energy ultrashort pulses, with significant

tunability of the pulse duration and chirp.

This work has focused on fundamental determinants of the laser performance. It

should be reasonably straightforward to extend the ANDi lasers to higher pulse energies

by technical approaches such as the use of large-mode-area fibers; with larger mode

area, higher energy is reached at fixed nonlinear phase shift. Higher average powers

will be obtained with double-clad gain fibers pumped by broad-area emitters. Order-of-

magnitude increases in the pulse energy and average power should be possible. Such a

level of performance would make these lasers even more attractive in short-pulse appli-

cations. Finally, lasers that are mode-locked by spectral filtering of a chirped pulse can

be constructed entirely of fiber-format components to yield integrated, and eventually

environmentally-stable, sources of femtosecond pulses.
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CHAPTER 4

GENERATING HIGH PULSE ENERGY FROM ANDi FIBER LASERS1

In this chapter, the investigation of high pulse energy generation in ANDi fiber lasers

is presented. Since the net GVD of ANDi fiber lasers are much larger than conventional

fiber lasers, high-energy pulses are predicted. Furthermore, unique pulse shaping mech-

anism of chirped-pulse spectral filtering provides a stable mode-locked operation even

with a substantially large nonlinear phase shift (>10π). By selecting appropriate GVD,

spectral filter and proper pump power, ∼25 nJ pulse energy with ∼150 fs pulse duration

is achieved.

4.1 Introduction

Fiber lasers have the practical advantages of better stability, greater efficiency, lower

sensitivity to alignment and a more compact design than solid-state lasers. However,

applications of short-pulse fiber lasers have been limited by the lower pulse energies

available from fiber lasers. Most femtosecond fiber lasers employ segments of normal

and anomalous group velocity dispersion (GVD) within the cavity. Different operating

regimes are found according to the net cavity dispersion. By increasing the net cavity

GVD from large and anomalous to large and normal, soliton, stretched pulse [2] and self-

similar [3] regimes are found in sequence. To date, self-similar lasers have produced the

largest pulse energies. Buckley et.al. demonstrated a self-similar ytterbium (Yb) doped

fiber laser with a pulse energy above 10 nJ [4]. Above 20 nJ was achieved by increasing

the mode area and thereby reducing self-phase modulation (SPM) [5].

Recently, a femtosecond-pulse laser without anomalous GVD in the cavity was

1Most of the results presented in this chapter have been published in Ref [1]
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demonstrated [6]. Self-amplitude modulation in such an all-normal-dispersion (ANDi)

fiber laser occurs through spectral filtering of a highly-chirped pulse in the cavity. The

pulse can be dechirped to the transform-limit outside the cavity. Pulse energy as high as

3 nJ was achieved in the initial demonstration. The simplicity of an ANDi laser makes it

attractive for applications, and it is natural to ask whether the pulse energy can be scaled

to larger values.

Two features of an ANDi laser suggest that this design will be compatible with high-

energy pulses. First, ANDi lasers can be mode-locked with the net (normal) cavity GVD

an order of magnitude higher than that of fiber lasers with dispersion maps. Pulse energy

is theoretically expected to increase rapidly with increasing GVD [3]. Second, the pulse-

shaping mechanism requires SPM, and gets stronger with increasing pulse intensity and

nonlinear phase shift. Thus, an ANDi laser may be more tolerant of large nonlinear

phase shifts than prior lasers.

In this chapter, we report the results of an investigation into high-energy operation

of an ANDi laser. Numerical simulations indicate that femtosecond pulses with ener-

gies in the vicinity of 50 nJ should be possible. Experiments are constrained by the

pump power available from single-mode diodes, but pulse energies above 20 nJ are still

achieved. The experimental results agree reasonably well with the numerical calcula-

tions, and represent an order-of-magnitude increase over the pulse energy of the initial

ANDi laser [6]. After dechirping to 150-200 fs duration, peak powers in the 100-kW

range are possible. The pulse energy and peak power are comparable to the highest-

reported values for femtosecond fiber oscillators.
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4.2 Numerical simulations and experimental results

The available pump power impacts the design of the laser in several ways. By pumping

a segment of gain fiber with two single-mode diodes, up to 800 mW power is available

in-core. The efficiency of the ANDi laser can be 30-40% which implies a maximum

average output-power of ∼300 mW. To access the 10-30 nJ energy range, the repetition

rate must be reduced to ∼10 MHz, which corresponds to >10 m of fiber in the cavity.

The large normal GVD provided by such fiber lengths is desirable, but it also reduces the

output spectral bandwidth [7]. The spectral filter that shapes the pulse must be chosen

appropriately.

Numerical simulations were performed to assess these issues and explore the high-

energy limit of operation [8]. Here we summarize the results obtained with 8- and 16-m

cavities, which correspond to 25- and 12.5-MHz repetition rates, respectively. The fiber

is followed by a lumped saturable absorber, which represents nonlinear polarization

evolution (NPE), and a gaussian filter in a ring cavity (see top of Figure 4.1). Based

on initial trials, a filter bandwidth (BW) of 8 (6) nm was chosen for the 25 (12.5) MHz

repetition rate laser.

Stable solutions are found for a wide range of pulse energies, up to ∼50 nJ. Results

that are representative of pulse energies > 10 nJ are shown in Figure 4.1. Specifically,

the result for the laser with a 25 (12.5) MHz repetition rate and 12- (26)-nJ output

pulse energy is shown. The pulse duration increases monotonically in the long segment

of SMF. It decreases owing to NPE, but the self-amplitude modulation is dominated by

filtering in the gain segment and the spectral filter. The approximately gaussian spectrum

(Figure 4.1, middle and bottom panels) broadens in the SMF segments, and eventually

develops the steep and structured edges characteristic of SPM. The filter restores the
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Figure 4.1: Numerical simulation results: Top: pulse duration evolution for lasers
with 25 MHz (solid line, 12 nJ pulse energy) and 12.5 MHz (dashed
line, 26 nJ pulse energy) repetition rates; Middle / Bottom: 25 MHz
/ 12.5 MHz laser spectra at a)/d) beginning of the first SMF, b)/e) be-
ginning of the gain fiber and c)/f) output; NPE: nonlinear polarization
evolution; SF: spectral filter

roughly-gaussian spectrum on each traversal of the cavity. The temporal and a spectral

breathing ratios increase to accommodate higher pulse energy and nonlinear phase shift

(ΦNL). For the 26-nJ pulse, e.g., ΦNL ∼12π. However, the pulse can be dechirped to

within 15% of the transform limit with a linear dispersive delay. Pulse-shaping based on

chirping and spectral filtering is remarkably effective in producing output pulses with

nearly-linear chirp.

Based on the results of the simulations, an ANDi laser was built with Yb-doped gain
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Figure 4.2: Schematic of ANDi fiber laser: QWP: quarter-waveplate; HWP:
half-waveplate; PBS: polarizing beam-splitter; WDM: wavelength-
division multiplexer.

fiber (Figure 4.2). The total cavity length can be adjusted to give a ∼25 (12.5) MHz

repetition rate. The fiber section consists of 7 (15) m of SMF followed by 20 (50) cm of

Yb fiber with another ∼1 (0.5) m segment SMF attached at the end of the gain fiber. All

fibers have a 6-µm core diameter. The total cavity dispersion is ∼0.19 (0.38) ps2. Two

980-nm diodes supply ∼800 mW maximum pump power. To optimize the output pulse

energy, the output is taken directly from the polarizing beam splitter, acting as the NPE

ejection port[9]. A birefringent plate with suitable thickness, inserted between the beam

splitter and the isolator, provides a sinusoidal spectral transmission. A filter bandwidth

of 8 (6) nm is chosen for the 25 (12.5) MHz repetition rate laser. These setups produce

a variety of mode-locked states as the waveplates are rotated. The output pulse train is

monitored with a photodetector/sampling oscilloscope combination with a bandwidth of

30 GHz. The interferometric and intensity autocorrelations are monitored for delays up

to ∼100 ps.

For the 25-MHz laser, single-pulse and self-starting mode-locking occurs for many

settings of the waveplates. The mode-locked average power is 300 mW with 660-mW

pump power. The maximum pulse energy is 12 nJ. With the corresponding waveplates
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Figure 4.3: Output of the 25 MHz laser at 12 nJ energy: a) spectrum, b) dechirped
autocorrelation (∼240 fs) and the autocorrelation of the zero-phase
Fourier-transform of the spectrum (∼210 fs, inset), c) simulated spec-
trum, d) simulated dechirped pulse (∼225 fs).

setting, ∼80% of the incoming pulse energy is coupled out at the NPE ejection port. As

shown in Figure 4.3, the measured spectrum exhibits the main features of the simulation

at the same energy. The 12-nJ pulses can be dechirped to 240-fs duration (Figure 4.3(b)),

which is close to the transform limit, as predicted. Despite the structured spectrum,

the experimental output pulse quality is high: only 1% of the pulse energy is in the

secondary temporal lobes.

With the repetition rate reduced to 12.5 MHz, stable single-pulsing operation is ob-

tained with low pump power (< 200 mW). As the pump power increases, the laser tends

to multi-pulse. With pump power above 200 mW, only the mode with the broadest

output spectrum is single-pulsing. The highest pulse energy that was obtained directly
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and in single-pulsing operation is 22 nJ (275 mW average power). However, with the

waveplates oriented to produce the 22-nJ pulses, the pump power can then be increased,

increasing the pulse energy up to 26 nJ (325 mW average power obtained with 750 mW

pump power. ∼70% of the incoming pulse energy is coupled out at the NPE ejection

port.) The 26-nJ pulses are not self-starting, although they are self-sustaining. This be-

havior is an indication of over-driving the NPE. The characteristics of the 26-nJ pulses

are shown in Figure 4.4 along with the corresponding simulation results. The dechirped

pulse duration is 165 fs, which is again close to the transform-limited value. In this case

the side-lobes in the time domain contain ∼4% of the energy. The spectrum exhibits

the strong fringes seen in the simulation. A small pulse that contains ∼0.5% of the total

pulse energy occurs ∼4 ps from the main peak, which is the time interval expected from

the spectral fringe spacing. As demonstrated previously [9], the experimental result

shows the NPE ejected output pulse quality is worse than that of the cavity circulating

pulse. The transmitted spectrum (Figure 4.4(a) dotted) of the NPE port is cleaner than

the ejected spectrum with only ∼2% of the energy in the side lobes and negligible small

remote pulses.

The pulse quality is significantly improved from the previously reported result [6].

In the initial demonstration, an interference filter was used. Numerical simulations con-

sistently show that a Gaussian-shaped filter is highly desirable, and in the present work

we implement such a shape by the use of a birefringence filter. We believe that higher

pulse energies are possible with ANDi fiber lasers. As mentioned above, numerical

simulations show that 50-nJ pulses are stable with an appropriate saturable absorber.

By replacing NPE with a semiconductor saturable absorber, e.g., it should be possible

to reach higher energies at lower repetition rates. However, the results presented here

are probably approaching the margin of multi-pulsing and acceptable pulse quality. Our

future effort will be focused not only to increase the pulse energy but also to improve
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Figure 4.4: Output of the 12.5 MHz laser at 26 nJ energy: a) spectra transmitted
(dotted) and rejected (solid) from the NPE port, b) dechirped autocor-
relation (∼165 fs) and the autocorrelation of the zero-phase Fourier-
transform of the spectrum (∼140 fs, inset), c) simulated spectrum, d)
simulated dechirped pulse (∼195 fs).

the pulse quality and stability against multi-pulsing. This work demonstrates that stable,

high-quality pulses in the range of 10-20 nJ can be obtained with this class of laser.

4.3 Conclusion

To summarize, we have shown that an ANDi fiber laser can generate stable pulses de-

spite the accumulation of nonlinear phase shifts greater than 10 π. Strong pulse-shaping

by spectral filtering of the chirped pulse in the cavity supports stable pulses with 20 nJ

energy, and these can be dechirped to ∼200 fs duration. Experimental results agree rea-

sonably well with numerical simulations of the laser behavior and performance. Higher
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energies may be reached by further development of the effective or real saturable ab-

sorber in the laser.
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CHAPTER 5

PULSE DURATION LIMITATION OF ANDi FIBER LASERS

In this chapter, the investigation of short pulse generation in ANDi fiber lasers is pre-

sented. According to the numerical simulations, very short pulse durations compatible

to those of stretched pulse fiber lasers can be generated. The pulse shaping mechanism

to generate a short pulse duration is fundamentally different from that of the stretched

pulse fiber laser. The numerical simulation result shows the possibility of ∼10 cycle

pulse generation in ANDi fiber lasers. In the experiment, a ∼10 cycle pulse was not

realized due to the limited pump power but reasonably short pulse durations of 70∼80

fs are obtained.

5.1 Introduction

Fiber lasers have the practical advantages over solid-state lasers. However, applications

of fiber lasers have been limited by the lower pulse energies and the longer pulse du-

rations. The design of a short pulse fiber laser was heavily influenced by the master

equation approach [1]. The shortest pulse duration is reachable around zero net cavity

group velocity dispersion (GVD) according to the master equation approach. Guided by

the master equation prediction, building a stretched pulse fiber laser [2] with a dispersion

map targeting near zero net GVD was a common sense to obtain very short pulses.

Most distinguished short pulse results are as follows. Ilday et al. demonstrated 36-

fs pulses from a Ytterbium (Yb)-doped fiber laser [3]. The higher-order dispersions

were huddles for even shorter pulses. By compensating third-order dispersion (TOD)

of Yb-doped fiber laser with a grating-prism pair, Buckley et al. demonstrated 33-fs

pulses with outstanding pulse quality [4]. For Erbium (Er)-doped fiber lasers, Tang et
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al. demonstrated 47-fs pulses [5]. These are accomplishments of short pulses based

on the stretched pulse operations at near zero net GVD. Stretched pulse operations was

believed to be essential for generating short pulses (i.e. <100 fs) with possible higher-

order dispersion compensation to enhance the pulse duration and quality.

Recently, an all-normal dispersion (ANDi) femtosecond laser with an intracavity

spectral filter was demonstrated [6]. Self-amplitude modulation in such a laser occurs

through spectral filtering of a highly-chirped pulse. Chong et al. demonstrated an inter-

esting mode of ∼150 fs pulses from a ∼16 m Yb-doped ANDi fiber laser cavity which

was ∼ 45 times of the dispersion length [7]. It indicates that shorter pulses may be

possible at very large GVD by choosing laser parameters properly. Generating short

pulses with a simple ANDi laser without an anomalous GVD segment will be attractive

for various applications. Moreover, since the pulses are always highly chirped in ANDi

lasers, higher-order dispersion may have negligible effects.

In this chapter, we report an investigation into the pulse duration limitation of Yb-

doped ANDi fiber lasers. Numerical simulations indicate that ∼30 fs pulses are possi-

ble at a large normal GVD. Experiments are constrained by the available pump power,

but 70∼80 fs dechirped pulse durations were still obtained at a large normal GVD

(0.03∼0.05 ps2).

5.2 Numerical simulation and experimental results

A guide for generating short pulses was provided by the systematic study of the ANDi

laser [8]. The output pulse is a strong function of the laser cavity GVD, ΦNL, and the

spectral filter BW. The mode-locked spectrum tends to be broadened with decreasing

GVD, decreasing spectral filtering bandwidth (BW), or increasing ΦNL. To see the ef-
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fect of parameters, numerical simulations were performed. The cavity was consisted

of a segment of SMF, and ∼60 cm Yb-doped gain fiber with another ∼1 m SMF fiber

segment. After the fiber segment, a spectral filter with ∼12 nm BW was set. Numeri-

cal simulations were performed for various combinations of the GVD and the ΦNL by

adjusting the length of the first SMF segment and the pump power.

Figure 5.1: Numerical simulation result summary of an ANDi fiber laser: Mode-
locked spectral BW vs. GVD

The numerical simulation results are summarized in Figure 5.1. The spectral BW

increases as the cavity GVD decreases. Increasing the pump power and therefore the

ΦNL also has the similar effect. Figure 5.1(a)-(c) show how the mode-locked spectra

with various combinations of GVD and the pump power. Starting from a mode of Fig-

ure 5.1(a), decreasing GVD while holding the pump power constant develops a more

structured but wider spectrum (Figure 5.1(b)). Meanwhile, increasing the pump power

while holding GVD constant has a similar effect. Dechirped pulse durations of Figure

5.1(b) and (c) are quite close. However, Fig 5.1(c) spectrum is more structured (higher

peaks around its edges) with a degraded pulse quality. The trend shows that the larger

ΦNL broadens the spectrum and but the pulse quality is degraded with structures in the

spectrum. Meanwhile, less GVD again broadens the spectrum with improved pulse

quality. Based on the simulation trend, the strategy to generate short pulses is to design
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a cavity with smallest possible GVD while pump the gain fiber as high as possible to

generate substantial ΦNL. Controlling GVD and ΦNL separately is tough especially for

Yb-doped laser since the ratio of the GVD coefficient and the nonlinearity coefficient

of the commercially available SMF is not flexible unless cumbersome photonic crystal

fibers are used. In this paper, we will focus on Yb-doped fiber lasers with only regular

which is the most practical case.

(b)(a)

Figure 5.2: Numerical simulation results of an ANDi fiber laser: a) mode-locked
output spectrum, b) externally dechirped time profile (∼34 fs)(inset:
chirped pulse directly from the laser cavity (∼4.3 ps))

For core pumped Yb-doped fiber lasers, the pump power and the net GVD are prac-

tically limited. Nevertheless, to verify that the laser can generate very short pulses,

numerical simulations were performed with a realistically short cavity and ideal unlim-

ited pump power. The cavity was consisted of 50 cm of SMF, and 20 cm gain fiber (40

nm gain BW) with another 50 cm SMF fiber segment. After the fiber segment, a 40 nm

BW spectral filter was set. Numerical simulations were performed for various ΦNL by

adjusting the pump power.

The numerical simulation result with the shortest dechirped pulse duration is shown

in Figure 5.2. The spectrum develops sharp structures near its edges (Figure 5.1(a)) and

as the consequence, the dechirped pulse shows strong sidelobes (Figure 5.1(b)). How-

ever, the spectrum was broad enough to have ∼34 fs dechirped pulse duration. The pulse
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energy was ∼44 nJ which corresponds to ∼7 W average power. Same numerical simu-

lation without TOD was performed but the spectrum and the dechirped pulse duration

were not altered significantly. It is believed that highly chirped pulses of ANDi lasers

are impervious to higher-order dispersions. It implies that the strategy of generating

short pulses from ANDi lasers is essentially different from that of stretched pulse lasers.

For stretched pulse lasers, the compensation of higher-order dispersions is desirable.

Moreover, the pulse energy from the stretched pulse laser is moderate. In contrast, the

compensation of higher-order dispersions in ANDi lasers does not affect the laser perfor-

mance noticeably. The simulation also indicates that the ANDi fiber laser can generate

very high pulse energies since the pulse shaping mechanism requires substantial ΦNL.

To predict the real performance of the laser, we performed a numerical simulation with

realistic pump power to have 2∼3 nJ (200∼400 mW average power) pulse energies.

The dechirped pulse durations, which are expected to be observed experimentally with

available pump power, were 70∼80 fs.
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Figure 5.3: Schematic of ANDi fiber laser: QWP: quarter-waveplate; HWP:
half-waveplate; PBS: polarizing beam-splitter; WDM: wavelength-
division multiplexer.

Based on the simulation results, an ANDi laser was built (Figure 5.3). Since the

pump power is limited, we increased the SMF after the gain fiber to enhance the ΦNL

targeting a 80 MHz repetition rate. The fiber section consists of ∼44 cm of SMF, ∼17

cm of Yb-doped fiber, and ∼170 cm segment SMF. The cavity GVD is ∼0.053 ps2. Two
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980-nm diodes supply ∼900 mW pump power. A set of a half, a quarter waveplate,

and a polarizing beam splitter (PBS) acts as the nonlinear polarization evolution (NPE)

ejection port (output 1). It is well known that the cavity circulating pulse quality is better

than that of the NPE ejected [9]. To obtain quality pulses, we setup a second PBS to

couple out the cavity circulating pulse as the main output (output 2). A birefringent filter

with 15 nm BW was set after the second PBS. The output pulse train is monitored with

a photodetector/sampling oscilloscope combination with a bandwidth of 30 GHz. The

autocorrelation (AC) signal is monitored for delays up to ∼100 ps. The laser is mode-

locked for various self-starting modes by adjusting waveplates. The shortest duration

result is shown in Figure 5.4.

(a) (b)

(c) (d)

Figure 5.4: Output of the 80 MHz laser : a) output1 spectrum, b) output2 spec-
trum, c) chirped autocorrelation (∼1.7 ps), d) dechirped autocorre-
lation (∼68 fs) and the autocorrelation of the zero-phase Fourier-
transform of the spectrum (inset).

The structured spectrum of output 1 (Figure 5.4(a)) is similar to the simulation re-
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sult (Figure 5.2(a)). However, the cavity circulating spectrum is much cleaner (Figure

5.4(b)) which was dechirped to ∼70 fs pulse duration (within ∼7 % of the transform

limited). The output 2 has 172 mW average power which corresponds to ∼2 nJ pulse

energy. Even though the output 2 spectrum is less structured, the time profile has some

sidelobes as the consequence of remaining spectral fringes and steep edges. The role

of the spectral filter is crucial. Without it, no stable mode-locking is obtained. One can

improve the pulse quality further while keeping the pulse duration by decreasing GVD

and nonlinearity properly. This process is equivalent to moving from the condition of

Figure 5.1(c) to that of Figure 5.1(b). While keeping the same pump power, the segment

of SMF after the gain fiber in Figure 5.4 was reduced to ∼75 cm (GVD ∼0.033 ps2, 130

MHz repetition rate). The best result was presented in Figure 5.5.

(a) (b)

(c) (d)

Figure 5.5: Output of the 130 MHz laser : a) output1 spectrum, b) output2 spec-
trum, c) chirped autocorrelation (∼1.4 ps), d) dechirped autocorre-
lation (∼77 fs) and the autocorrelation of the zero-phase Fourier-
transform of the spectrum (inset).
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The mode-locked spectrum (Figure 5.5(a)) is much smoother as expected. The cav-

ity circulating pulse has a noticeably clean spectrum (Figure 5.5(b)). AC (Figure 5.5(d))

shows a clean ∼80 fs dechirped pulse with very small sidelobes (within 7% of the trans-

form limited). 155 mW average power corresponds to ∼1.2 nJ pulse energy. Without

a spectral filter, some modes were stably mode-locked. However, those modes were

always narrower in spectral BW. It indicates that the spectral filter is crucial to stabilize

the mode with a broadened spectrum by substantial ΦNL. The experimental results agree

with the numerical simulation with realistic pump power. Recently, Ruehl et al. demon-

strated ∼75 fs from a high normal GVD Er-doped fiber laser [10]. Even though the result

in this paper looks similar to the work of Ruehl et al., the pulse shaping mechanism is

quite different. Ruehl et al.’s laser relied on a wide Raman gain BW while the short

pulse generation in this paper is based on balancing of GVD, ΦNL, and an appropriate

spectral filtering BW.

5.3 Conclusion

To summarize, we report an investigation of the pulse duration limitation of Yb-doped

ANDi fiber lasers. Experimental results agree with numerical simulations. By adjusting

laser parameters properly and coupling out the cavity circulating pulse, pulse quality

can be improved noticeably. The experiment demonstrated clean pulses with energies

of 1∼2 nJ and 70∼80-fs dechirped duration. The experiment is limited by the available

pump power and the numerical simulation suggests that ∼30 fs duration is quite possible

from a very simple ANDi fiber laser with a proper pump power.
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CHAPTER 6

ENVIRONMENTALLY STABLE ANDi FIBER LASERS1

Chapter 6 describes the demonstration of environmentally stable version of ANDi

fiber lasers utilizing polarization maintaining fibers. Two cavity designs are presented

in this chapter along with experimental results for each one. The first one is the sigma

cavity design and the second one is the Fabry-Perot linear cavity. The self-starting

is initiated by the semiconductor saturable absorber in both cases. The unique pulse

shaping mechanism of chirped pulse spectral filtering generates femtosecond pulses at

very large normal GVD.

6.1 Introduction

Femtosecond fiber lasers are attractive short-pulse sources because of their stability, high

efficiency, low sensitivity to alignment, compact design and low production cost. There

were notable achievements of the pulse energy and the pulse duration in high-energy yt-

terbium (Yb)-doped fiber lasers recently. However, wide adoption of fiber lasers beyond

the laboratory environment is discouraged because the mode-locked operation can be

disrupted by external perturbations. Thermal and mechanical perturbations to the fiber

can induce random birefringence, which can substantially alter the laser performance.

Ideally, linearly-polarized light along the slow axis of a polarization-maintaining

(PM) fiber is robust against such perturbations. Researchers have devoted substantial

efforts to development of environmentally-stable mode-locked fiber lasers, in many con-

figurations. Although PM fibers were successfully employed in a variety of laser config-

urations, building femtosecond Yb-doped PM fiber lasers was challenging. Fiber lasers

1Most of the results presented in this chapter have been published in Ref [1]
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typically contain an intracavity anomalous group velocity dispersion (GVD) segment,

which has been considered a prerequisite to the generation of femtosecond pulses. For

Yb-doped fiber lasers, components that introduce anomalous GVD (grating pairs, pho-

tonic crystal fibers (PCF), fiber Bragg gratings, higher-order-mode (HOM) fibers, etc.)

tend to introduce complications and/or increase cost. The nonlinear polarization evolu-

tion (NPE) mode-locking technique, which exploits the cross phase modulation between

two polarization modes, is not conveniently applicable to PM fibers.

Various mode-locking mechanisms and means of introducing anomalous GVD into

PM Yb-doped fiber lasers have been proposed. A sigma-type cavity utilizing an anoma-

lous dispersion photonic bandgap fiber as a PM fiber was demonstrated [2]. Nielsen

et al. reported a femtosecond PM linear fiber laser with a semiconductor saturable ab-

sorber mirror (SESAM) and a grating pair [3], and a fiber Bragg grating can replace

the bulk grating pair [4]. A clever way to implement NPE in a PM fiber laser was also

demonstrated [5]: a linear cavity with a Faraday mirror was successfully mode-locked

utilizing NPE in the PM fiber. This work established the possibility of NPE in the PM

fiber, but the pulse duration was in the picosecond range.

Recently, a femtosecond fiber laser without an intracavity anomalous GVD seg-

ment was demonstrated [6]. Self-amplitude modulation in such an all-normal-

dispersion (ANDi) laser occurs through spectral filtering of a chirped pulse. A sim-

ple environmentally-stable femtosecond fiber laser is anticipated by replacing all fiber

components with PM versions and adding a suitable saturable absorber (SA), such as

a SESAM. The self-amplitude modulation is dominated by the contribution of the fil-

tering in ANDi lasers, but a significant contribution from NPE has also been required

for stable operation. Thus, it is not clear a priori that a SESAM will be adequate to

stabilize pulses formed by the spectral filtering mechanism. Ortaç et al. reported a laser
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based on single-polarization large-mode-area (LMA) PCF and a SESAM, which gen-

erated 750-fs pulses with 25 nJ energy [7]. Pulse shaping in this laser is attributed to

saturable absorption, with minimal effects from spectral filtering. The LMA fiber offers

intriguing potential for high pulse energies, but since the fiber cannot be bent, lasers

with LMA fibers lose the advantage of the flexible optical fiber. Therefore the laser in-

tegration remains complicated and expensive. With free-space pumping, inflexible gain

fiber and the laser cavity largely defined by bulk optics, birefringence of the fiber is not

likely to be the primary limit to stability of this kind of laser.

We demonstrate an environmentally-stable ANDi Yb-doped fiber laser that em-

ploys only PM fibers. We present two different fiber laser configurations for the

environmentally-stable ANDi fiber lasers. For the sigma laser configuration, the unique

pulse-shaping mechanism of the ANDi fiber laser provides stable mode-locked opera-

tion at large normal net cavity GVD (∼ 0.1ps2). The linear cavity configuration with

PM fiber and very large normal GVD (∼ 0.17ps2) is also demonstrated. For both cases,

the pulse-shaping is dominated by the spectral-filtering mechanism, and self-starting

operation is ensured by the inclusion of a SESAM. Strong spectral filtering can en-

hance the mode-locked spectrum and hence the dechirped pulse duration [9]. Even with

such large GVD, the laser generates ∼300-fs pulses. Once the mode-locked operation

was obtained, the laser was stable against external perturbations to the fiber due to the

environmentally-stable nature of the PM fiber.
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6.2 Numerical simulations and experimental results for a sigma

cavity

The experimental setup is shown in Figure 6.1. The fiber section contains only PM fiber

components. The fiber section consists of ∼3 m of PM single-mode fiber (SMF) fol-

lowed by ∼60 cm of PM Yb-doped fiber with another ∼1 m segment PM SMF attached

at the end of the gain fiber. The PM wavelength division multiplexer couples a maxi-

mum of 300 mW of 980-nm pump power to the core of the gain fiber. The total cavity

dispersion is ∼0.1 ps2. All PM fiber components were carefully spliced with extinction

ratios over 35 dB. After the fiber section, the laser output 1 is coupled out at the ejection

port consisting of a half-waveplate (HWP), a quarter-waveplate (QWP) and a polariz-

ing beam splitter (PBS). A combination of waveplates and a PBS does not induce an

amplitude modulation even though it resembles an NPE port. The role of it is simply

to provide a fully flexible output coupling ratio in the experiment. The waveplates and

PBS setup can be replaced by fiber integrated devices such as a PM variable coupler

and a PM circulator. The SESAM is commercially available with a ∼35% modulation

depth, a ∼40-nm spectral bandwidth (BW) and a ∼500-fs relaxation time constant. A

10× microscopic objective lens was used to focus the beam on the SESAM.

The beam propagates through another ejection port to couple out at output 2 through

PBS 2. The purpose of the second ejection port is to obtain cleaner pulses owing to

the SESAM’s saturable noise suppressing action. Again, the second ejection port can

be replaced by a PM variable coupler for a fiber integrated laser design. The remaining

beam travels through an ∼8 nm BW birefringence filter consisting of PBS 2, a birefrin-

gent plate and a polarization dependent isolator. A HWP adjusts the linear polarization

to match the slow axis of the PM fiber. Coupling into the PM fiber requires careful
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Figure 6.1: Schematic of environmentally-stable ANDi fiber laser: QWP: quarter-
waveplate; HWP: half-waveplate; PBS: polarizing beam-splitter;
WDM: wavelength-division multiplexer.

treatment to suppress energy in the wrong (fast) polarization axis. If the polarization

coupling into the PM fiber or the splicing between PM components are not perfect,

spectral ripples and fringes can appear on the top of the spectrum due to small energy in

the PM fiber’s wrong polarization axis[3]. Reducing fringes is highly desirable because

fringes on the spectrum usually indicate the time-domain pulse quality degradation with

possible small remote pulses. In practice, we could not find the perfect alignment con-

dition and some fringes on the top of the spectrum always showed up at output 1. To

circumvent the difficulty, it was decided to take the main output after the SESAM (out-

put 2).

The laser cavity is similar to a sigma-type cavity [2] but there is no fiber in the linear

segment. The linear segment was created solely to insert a reflective SESAM in an ef-

fectively ring-cavity configuration. The laser produced a variety of mode-locked states

as the waveplates were adjusted. The output pulse train was monitored with a fast de-

tector with a ∼300 ps response time. The interferometric and intensity autocorrelations
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Figure 6.2: Output of the environmentally-stable ANDi laser a) main output spec-
trum (inset: output 1 spectrum), b) dechirped autocorrelation (∼400
fs).

(AC) were monitored for delays up to ∼100 ps.

The ejection ports were adjusted to suppress output 1 while output 2 was maxi-

mized as much as possible. By adjusting the waveplates carefully, a stable self-starting

mode-locked operation was obtained. As the pump power passed beyond 200 mW, the

operation quickly evolved into multi-pulsing.

Figure 6.2. shows a typical output of the laser under single-pulsing operation. The

spectrum (Figure 6.2(a)) resembles the similariton’s characteristic spectrum [10]. This

spectrum shape was also observed in a non-PM ANDi Yb-doped fiber laser [8]. The

pulse energy was ∼0.5 nJ with 200-mW pump power. Pulses were externally dechirped

by a grating pair to ∼400-fs pulse duration which is within 3% of the transform limit.

The spectrum of output 1 (Figure 6.2(a) inset) shows spectral fringes. The spectral

fringes (∼1-nm spacing) indicate a small remote pulse with a ∼3.5-ps delay, which

roughly matches the polarization mode group delay due to the total fiber birefringence.

However, the spectrum of output 2 (Figure 6.2(a)) was much smoother since the SESAM

suppresses the small remote pulse caused by excessive energy in the PM fiber’s wrong

polarization axis. The operation was unvaried due to external mechanical perturbations

108



Figure 6.3: Output of the modified environmentally-stable ANDi laser a) main
output spectrum (inset: spectrum), b) dechirped autocorrelation (∼270
fs).

such as moving, shaking and twisting of the fiber. The mode-locked operation was

unchanged and sustained for three days until intentionally interrupted.

We attempted to create each of the operating modes seen in the non-PM ANDi fiber

laser [8]. However, the laser described above could not produce modes accompanied

by spectra with sharp peaks which are to be generated from high nonlinearity. To verify

that the PM ANDi fiber laser exhibits the same features as the non-PM ANDi fiber laser,

the laser cavity was slightly modified. To enhance the cavity efficiency and therefore the

induced nonlinearity in the fiber, one of the output ports was removed while the pump

power was increased to its maximum. Since PBS 1 was essential to composing a sigma

cavity, the second output port was the only one that could be removed. We simply pulled

out PBS 2 to eliminate the second output port. After removing PBS 2, by adjusting the

waveplates, a stable single-pulsing mode-locked operation with the desired spectrum

shape was achieved.

Figure 6.3 shows the typical output for the modified laser. The spectrum shows

sharp peaks around its edges as observed in non-PM ANDi fiber lasers [6, 8]. Since

there was only one output ejection port right after the fiber section, we could not exploit
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the SESAM’s saturable noise suppression. The beam coupling into the PM fiber was

carefully adjusted to reduce the spectral fringes as much as possible but some spectral

fringes still appeared. Again, there is presumably a small pulse 3.5-ps away from the

main envelope. A small pulse was verified by the zero-phase Fourier-transform of the

spectrum but it was in the noise of the AC measurement. The SESAM’s saturable noise

suppression action could be monitored by measuring the spectrum reflected on the sur-

face of the birefringence plate (Figure 6.3(a) inset). 0.8-nJ pulse energy with ∼300-mW

pump power was achieved. The dechirped pulse duration of ∼270-fs was much shorter

than that of the mode in Figure 6.2 as expected. The dechirped pulse duration was only

∼15% beyond the transform limit.

Interestingly, the mode presented in Figure 6.3 could support stable single-pulsing

operation with enhanced output pulse energy and higher pump power. Considering that

the first version of the laser (which produced the data of Figure 6.2) was limited by

multi-pulsing, it is surprising that stable single-pulse mode-locking is achieved at higher

energies. This counter-intuitive trend is observed in non-PM versions of the ANDi laser

[9], and will be addressed systematically elsewhere. Future efforts will be focused on

further understanding multi-pulsing in this kind of laser.

Likewise, the operation was environmentally-stable to external perturbations. How-

ever, the laser lost the mode-locked operation within several hours due to the SESAM’s

surface damage. It is believed that choosing an appropriate SESAM with a suitable

focusing lens will solve the SESAM damage problem. Nevertheless, we failed to stop

the SESAM surface damage with available components in the laboratory. The SESAM

damage problem will be investigated systematically in the future. The typical pulse en-

ergy was much lower than that of non-PM ANDi fiber lasers due to the low efficiency

(∼12% mode-locked efficiency) caused by a complicated sigma cavity structure. We be-
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lieve a ring-cavity with a transmission SESAM will have a higher laser efficiency with

a pulse energy comparable to a non-PM ANDi fiber laser.

6.3 Numerical simulations and experimental results for a linear

cavity

In this section, we report an environmentally-stable ANDi laser utilizing a Fabry-Perot

cavity. The design is a linear cavity with PM fiber and very large normal GVD (∼
0.17ps2). The pulse-shaping is dominated by the spectral-filtering mechanism, and self-

starting operation is ensured by the inclusion of a SESAM. Strong spectral filtering can

enhance the mode-locked spectrum and hence the dechirped pulse duration [9]. Even

with such large GVD, the laser generates 300-fs pulses.

A numerical simulation with realistic parameters was performed to understand the

detailed operation of a linear ANDi fiber laser. Figure 6.4 shows the cavity schematic

with numerically simulated spectra at various locations. The SA is assumed to saturate

monotonically, and to have an infinitely fast response. The fiber section consists of 1 m

of single-mode fiber (SMF) followed by 60 cm of Yb-doped gain fiber and another 40

cm of SMF. After the fiber segment, is a Gaussian filter with 12 nm bandwidth (BW).

The pulse traverses the filter twice in each round trip. The output is coupled out with

70% coupling ratio right after the pulse passes the spectral filter in the forward direction,

as shown in Figure 6.4. Pulse evolution in each segment was solved numerically using

a split-step Fourier method until it reaches a steady state.

After reflection from the SESAM, the spectrum exhibits a parabolic top, with steep

edges (Figure 6.4(a)). Weak spectral broadening occurs in the first segment of SMF
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Figure 6.4: Linear ANDi fiber laser simulation setup with simulated spectra at
various locations: SA: saturable absorber; SF: spectral filter; HR: high
reflection mirror; SMF: single mode fiber.

(Figure 6.4(b),(c)). The amplified pulse undergoes substantial self-phase modulation in

the following SMF segment, and the spectrum develops sharp peaks near its edges (Fig-

ure 6.4(d)). These peaks are diminished by the two passes through the filter (Figure 6.4(e

and f), and the spectrum mimics the filter characteristic. The spectrum gently broadens

on propagation in the backward direction (Figure 6.4(g),(h),(i)), and the SA restores

the spectrum to that in Figure 6.4(a). The self-amplitude modulation is predominantly

(∼80% of the total) from the spectral filtering, similar to what was found in ring cavities

[6, 8]. The simulated main output pulse has 2 nJ energy with ∼5 ps duration.

The experimental setup is shown in Figure 6.5. The SESAM (from BATOP GmbH)

has ∼35% modulation depth, ∼40 nm spectral bandwidth (BW) and a relaxation time

constant ∼500 fs. The fiber segments are as in the numerical simulations described

above. All PM fiber components were carefully spliced with an estimated extinction

ratio over 35 dB. PBS 1, the birefringent plate, and PBS 2 constitute a birefringent filter

with ∼12 nm BW. The round-trip cavity dispersion is ∼0.17 ps2. The experimental
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Figure 6.5: Schematic of environmentally-stable linear ANDi fiber laser: QWP:
quarter-waveplate; HWP: half-waveplate; PBS: polarizing beam-
splitter; WDM: wavelength-division multiplexer; HR: high reflection
mirror. All components are PM components.

setup is designed to allow maximum flexibility in studies of pulse formation, which is

provided by the bulk optics. However, the cavity could be simplified and integrated by

replacing all components with fiber-format versions, which are commercially available.

The ejection from the PBS1 (output 1), was monitored to observe the spectrum right

after the fiber segment. The reflection from the birefringent plate (output 2) allows us to

monitor any modulation on the spectrum transmitted through PBS 1. The double pass

through the quarter-waveplate (QWP) rotates the polarization to adjust the coupling ratio

of output 3, from PBS 2. Output 3 is the main laser output. Two other outputs from the

laser are energy ejected by the filtering action. Energy ejected at the birefringent filter is

not useful for most applications due to the low pulse quality. The mode-locked spectra

indicates some residual energy in the fast polarization axis of the PM fiber.

If the polarization coupling into the PM fiber or the splicing between PM compo-

nents is not perfect, some ripples on the top of the spectrum can be observed [3]. Such

ripples indicate degradation of the pulse temporal profile or the existence of secondary

pulses. PBS 1 can relieve the problem by ejecting residual pulses in the wrong polar-
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ization axis of the PM fiber. It also ensures that a linear polarization matching the slow

axis of the PM fiber goes back into the fiber segment.

By carefully adjusting the waveplates, a clean mode-locked spectrum without fringes

can be obtained at the main output. The SESAM and the spectral filter were both essen-

tial for mode-locking. Although only PM fiber components were used, some residual

NPE action due to energy in the wrong polarization axis might contribute to mode-

locking. However, without a SESAM, stable mode-locked operation did not occur for

any orientation of the waveplates. This indicates that the NPE action alone was not

strong enough to start the laser.

(a) (b)

(c) (d)

Figure 6.6: Output of the environmentally-stable linear ANDi laser (a) output 3
spectrum (74 mW), (b) output 3 dechirped autocorrelation (∼310 fs)
(inset: chirped autocorrelation), (c) output 1 spectrum (3.6 mW), (d)
output 2 spectrum (4 mW).

The output pulse train was monitored with a detector with 300 ps response time,

and the autocorrelation (AC) was monitored for delays up to ∼100 ps. Figure 6.6 shows
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the output. The spectrum from output 1 (Figure 6.6(c)) has sharp peaks near its edges,

as predicted by the numerical simulations. Spectral fringes with ∼0.7-nm spacing indi-

cate possible remote pulses located ∼5 ps from the main pulse, which roughly matches

the polarization mode group delay due to the total linear birefringence. However, the

spectrum transmitted by PBS 1 (Figure 6.6(d)) is much smoother. It is believed that

PBS 1 ejects the energy in the wrong polarization axis of the PM fiber. Even though

the transmitted spectrum is less structured, the overall shape does not vary much from

the spectrum ejected by PBS 1. The SA modulates the amplitude of the chirped pulse,

which in turn produces spectral modulation. The similar spectra transmitted and ejected

by PBS 1 also indicate that the NPE only makes a weak contribution to the overall

amplitude modulation.

The main output (output 3) spectrum (Figure 6.6(a)) has lower peaks due to the

spectral filtering. The average power of output 3 was ∼74 mW with 33 MHz repeti-

tion rate, which corresponds to ∼2.2 nJ pulse energy. The coupling ratio was ∼80%.

The pulse duration was ∼6 ps (Figure 6.6(b) inset) which was dechirped by a grating

pair to 310 fs (Figure 6.6(b)), which is within 10% of the Fourier-transform limit. The

spectral shape, spectral BW, pulse energy, and pulse duration not only qualitatively but

also quantitatively match the numerical simulation results. The operation was unvaried

due to external mechanical perturbations to the fiber. The mode-locked operation was

unchanged and sustained for ∼3 days until intentionally interrupted. Improvement of

the laser performance by optimization of the parameters is anticipated. For example,

the numerical simulation indicates that the pulse energy can be improved by 50% by

simply increasing the pump power. Previously-reported ring cavity ANDi lasers with

NPE could operate in a wide variety of modes [8, 9]. In contrast, only limited modes

are observed with the PM cavity, all similar to that of Figure 6.6. It is not understood

what restricts the lasing modes in the PM cavity. Currently, we conjecture that the fixed
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saturation curve and long relaxation time of the SESAM restrict the laser to a narrow

range of pulse parameters.

6.4 Conclusion

To summarize, we demonstrate an environmentally mode-locked femtosecond ANDi

fiber laser with a linear and a sigma cavity design comprising only PM fibers. Exper-

imental results agrees well with the numerical simulation predictions. Filtering of a

chirped pulse, along with the saturable absorption of a SESAM combine to generate

stable, self-starting mode-locked femtosecond pulses at very large GVD.
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CHAPTER 7

CONTROLLING MULTIPULSING STATES IN ANDi FIBER LASER WITH

SPECTRAL FILTERING

This chapter describes the observation of high-harmonic mode-locked operations of

ANDi fiber lasers. Interestingly, the operation is tunable from a soliton bunch state to

a high-harmonic mode-locked state by adjusting the spectral filtering. The theoretical

understanding of the phenomena and the experimental results are discussed.

7.1 Introduction

The fiber lasers with NPE mode-locking mechanism generate a variety of mode-locked

operations. Among those modes, multipulsing operations are a commonly observed

phenomena. The fiber lasers can operate either with a single pulse or in multiple pulses

in a cavity round trip. The cause of multipulsing operations is connected to the pulse en-

ergy quantization in a laser cavity. The pulse energy quantization in soliton fiber lasers

is theoretically understood based on the soliton area theorem of the NLSE. Motivated by

readily available NLSE treatment with fully known soliton solutions, multipulsing op-

erations in soliton fiber lasers were studied experimentally and theoretically extensively

[1, 2, 3]. The pulse energy quantization is theoretically understood based on the soliton

area theorem of the NLSE.

In case of a normally dispersive fiber lasers, the pulse energy quantization can be un-

derstood based on dissipative solitons in a dispersive medium with a gain and a spectral

filtering (i.e. CGLE without a SA term) [7]. In fact, Bélanger et al.’s model is not quite

suitable to describe fiber lasers. However, the idea of the multipulsing due to the pulse

energy limitation is same for more complicated systems such as the energy limitations
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of dissipative solitons in the CGLE. In all cases, the multipulsing is explained as the

energy distribution into multiple numbers of pulses not to violate the pulse energy limit

of the system.

The fascinating aspect of the multipulsing phenomena is the interaction between

multiple pulses. When pulses attract, bounded solitons can be formed. The bound soli-

tons in soliton fiber lasers were extensively studied experimentally and theoretically

[4, 5, 6]. When a long distance stabilization occurs (even though the mechanism of it

is not fully understood theoretically), pulses may be distributed periodically to have a

repetition rate which is a multiple of the resonator round trip repetition rate [8]. This

phenomenon is referred as a harmonically mode-locked operation. When the interaction

between pulses is somewhat intermediate (i.e. the repulsion between pulses is short-

ranged), a soliton bunch can appear in soliton fiber lasers [10]. In contrast, the burst of

pulses from normally dispersive fiber lasers is different from a traditional soliton bunch

since the pulse is not the NLSE soliton. However, since the pulses from normally disper-

sive fiber lasers can be categorized as dissipative solitons, the burst from the normally

dispersive fiber lasers is still referred as a soliton bunch in this thesis. So far, it is not

fully understood what determines the interaction between pulses. However, based on

theoretical study of the complex Swift-Hohenberg equation (CSHE), it was shown that

the spectral filtering is important to determine the interaction between pulses [9]. The

CSHE, which is an important equation to understand the fiber laser, is an extension of

the CGLE. The details of the CSHE is covered not in this chapter but in chapter 11.

Recently, Komarov et al. theoretically showed that the interaction between multiple

pulses in an ANDi fiber laser with a NPE can be adjusted by introducing a narrow tun-

able spectral filter [11]. In this chapter, we demonstrate the multipulsing management

experimentally utilizing a tunable spectral filter in ANDi fiber lasers. By introducing
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a subtle detuning of the spectral filter, a harmonically mode-locked state converts into

a soliton bunch and vice versa in ANDi fiber lasers. Controlling the multipulsing state

with a simple spectral filter is surely an interesting physics and it may find some appli-

cations immediately.

7.2 Theory

The schematic in Figure 7.1 was used in the theoretical study of the controlling multi-

pulsing states in a normally dispersive fiber laser [11].

Figure 7.1: Schematic representation of the investigated laser. The ring laser res-
onator consists of the fibre gain medium, the polarizer, two quarter-
wave plates and one half-wave plate. α1, α2 and α3 are the orientation
angles of the phase plates. From [11].

The Figure 7.1 is a fiber laser with a NPE mode-locking mechanism with the fiber

segment only consists of a normally dispersive gain fiber. Instead of introducing a sym-

metric spectral filtering, Komarov et al. introduced a spectral filtering effect with a

peculiar shape (Figure 7.2). Once the physical intracavity spectral filter is introduced,

the laser becomes an ANDi fiber laser.

Figure 7.2 shows the net spectral gain-loss profile used in the simulation. Without a
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Figure 7.2: Net spectral gainloss profile with (solid line) and without (dashed line)
additional frequency-dependent narrow band loss. From [11].

spectral filter, the pulse in the cavity only faces the gain spectral filtering effect (dashed

line in Figure 7.2). When an extra Lorentzian spectral filer with a narrow BW is in-

troduced in the cavity, the pulse faces the spectral gain-loss profile of the solid line in

Figure 7.2. Γ−1 is the BW of the spectral filter while ko is the frequency detuning of the

spectral filter from the gain center wavelength. h is the height of the spectral filter.

Figure 7.3: Dependence of the change in the soliton velocity on the frequency
detuning ko of the additional narrow spectral selector. Arrows ← →
and → ← identify the regions of ko where the interaction is either
repulsive or attractive, respectively. From [11].

By performing numerical simulations with a variety of combinations, Komarov et

al. found that the interaction between pulse can be changed from the attraction to the

repulsion by adjusting the frequency detuning of the spectral filter. Figure 7.3 shows

the relative velocity (δυ) between pulses. Pulses are repulsive (δυ > 0) or attractive

(δυ < 0) according to ko. Therefore, it is conveniently tunable by the spectral filter

frequency detuning for the pulses to form a soliton burst with the attraction or to repulse
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each other to fill up the available time space forming a high-harmonically mode-locked

state.

)b()a(

Figure 7.4: Modeling of the regime of harmonic passive mode-locking due to soli-
ton repulsion. (a) Initial distribution of radiation in the ring cavity. (b)
Final stationary distribution. From [11].

The final stationary results of the soliton bunch (Figure 7.4(a)) and the harmonically

mode-locked state (Figure 7.4(b)) are shown in Figure 7.4.

7.3 Experimental

7.3.1 Converting from a high harmonically mode-locked state to a

soliton bunch

Motivated by the theoretical achievement, an experiment is conducted to demonstrate

the controlling the multipulsing state in ANDi fiber lasers. A experimental setup is

shown in Figure 7.5.

The total cavity length gives a ∼12.5 MHz repetition rate. The fiber section consists

of ∼15 m of SMF followed by ∼50 cm of Yb fiber with another ∼50 cm segment SMF

attached at the end of the gain fiber. All fibers have a 6-µm core diameter. The total
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Figure 7.5: Schematic of the experimental setup

cavity dispersion is ∼0.38 ps2. Two 980-nm diodes supply ∼800 mW maximum pump

power. The output is taken directly from the polarizing beam splitter, acting as the

NPE ejection port. The ANDi fiber laser has two spectral filters. The first one is the

birefringence filter with ∼12 nm BW and the second one is the interference filter with

∼4 nm BW. In the experiment, the center wavelength of the interference filter is fixed.

By adjusting the center wavelength of the birefringence filter, one can introduce a subtle

filter frequency detuning.

By adjusting waveplates, the laser is harmonically mode-locked with ∼165 MHz

repetition rate (Figure 7.6). Each pulse has ∼1.7 nJ energy. From this mode-locked

operation, by adjusting the center wavelength of the birefringence filter to induce a

subtle frequency detuning, the harmonically mode-locked operation slowly converts into

the soliton bunch. The soliton bunch is shown in Figure 7.7.

In this particular case, 10 pulses are bunched up with a ∼50 ps separation. Each

pulse contains ∼2.1 nJ energy. The soliton bunch (Figure 7.7) converts back to the har-

monically mode-locked (Figure 7.6) by moving the frequency detuning in the opposite

direction. The experimental result verifies the theoretical prediction of the controlling
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(a) (b)

(c)

(d)

Figure 7.6: Harmonically mode-locked spectrum and pulse train : a) output1 spec-
trum, b) spectrum after the NPE port, c) long range pulse train, d)
short-range pulse train.

the multipulsing states by the spectral filtering in ANDi fiber lasers [11].

7.3.2 Quantization of the pulse separation

In this section, we will provide the experimental observation of the pulse separation in

a dissipative soliton bunch. The experimental setup is same as Figure 7.5 except that

the birefringence filter BW is chosen to be ∼6 nm. It was found that several values of

separations in a soliton bunch can be generated by simply adjusting waveplate in the

fiber laser. Figure 7.8 shows the spectrum and the pulse train of a soliton bunch. In this

particular case, the pulse separation is ∼35 ps.

By adjusting waveplates, soliton bunches with different pulse separation are easily

found. For example, Figure 7.9 shows a soliton bunch with a ∼180 ps separation.
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(c)

(b)(a)

(d)

Figure 7.7: Soliton bunch spectrum and pulse train: a) output1 spectrum, b) spec-
trum after the NPE port, c) long range pulse train, d) short-range pulse
train.

Figure 7.8: Soliton bunch with ∼35 ps pulse separation.

The pulse separation between pulses is not always a constant. Figure 7.10 shows the

hybrid pulse separations of ∼35 ps and ∼100 ps while Figure 7.11 shows the combina-

tion of ∼35 ps and ∼180 ps.

For any modes of this particular laser, it was found that the pulse separation between

pulses is one of three separation values of ∼35 ps, ∼100 ps, and ∼180 ps. To emphasize
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Figure 7.9: Soliton bunch with ∼180 ps pulse separation.

Figure 7.10: Soliton bunch with hybrid pulse separtions (∼35 ps and ∼100).

that the pulse separation is to be certain limited number of values, we refer the phe-

nomenon as the quantization of the pulse separation in a soliton bunch. Even though it

is not fully understood what determines the separation, it seems like the spectral filter

Figure 7.11: Soliton bunch with hybrid pulse separations (∼35 ps and ∼180).
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BW surely is a factor. For example, Figure 7.7 shows a ∼50 ps separation with 12 nm

birefringence filter while Figure 7.8-11 exhibit different values with 6 nm birefringence

filter. It is believed that other laser parameters such as the GVD, and ΦNL affect the pulse

separation but the systematic study was not conducted yet. Further research is necessary

to address the issue in detail.

7.4 Conclusion

We demonstrate the multipulsing management experimentally utilizing a tunable spec-

tral filter in ANDi fiber lasers. By introducing a subtle detuning of the spectral filter, a

harmonically mode-locked state converts into a soliton bunch and vice versa in ANDi

fiber lasers. Controlling the laser multipulsing state with a simple spectral filter is surely

an interesting physics and a meaningful step to understand the role of the spectral fil-

tering in multipulsing operations. The quantization of the separation between pulses is

again an interesting physics and may be already significant for some applications. It is

strongly believed that the fiber laser with controllable pulse numbers and separations

will find a variety of applications immediately.
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CHAPTER 8

ANTISYMMETRIC DISPERSION-MANAGED SOLITON IN FIBER LASERS

In this chapter, the subject is changed from ANDi fiber lasers to an interesting

second-order DM soliton in a dispersion mapped passive transmission line. This second-

order DM soliton is referred as the antisymmetric DM (ASDM) soliton. We report the

observation of the ASDM soliton in an fiber laser oscillator. The observed pulse evolu-

tion, phase difference and pulse separation agree with the ASDM soliton theory.

8.1 Introduction

A dispersion-managed (DM) soliton is a soliton solution of a transmission line with a

periodically alternating sign of the dispersion. The DM soliton has a breathing tempo-

ral profile, which is close to a Gaussian profile rather than the sech profile of a soliton

of the ordinary nonlinear Schrödinger equation [1]. The DM soliton is different from

the standard soliton in many aspects. However, it was quickly recognized that the DM

soliton in a dispersion map is analogous to the standard soliton in an anomalous disper-

sion transmission line. Scientists were inspired to search for higher-order DM solitons,

which are analogous to higher-order standard solitons, to obtain complete understanding

of the DM soliton.

The first prediction of a second-order DM soliton was presented by Pare [2]. The

second-order DM soliton is well-approximated by a breathing, odd Hermite-Gaussian

(HG) temporal profile of E(t) = Ao t exp(−t2/2a2). The intensity profile exhibits two

temporal (spectral) envelopes with π phase difference (∆φ) between them. Such a pulse

was referred to as an antisymmetric dispersion-managed (ASDM) soliton which can also

be interpreted as bounded DM solitons with ∆φ = π and an appropriate separation [2].
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The bounded DM solitons can be modeled as a bound pair of chirped Gaussian pulses

as presented in Equation 8.1.

E(t) = Ao
to√

t2
o − iD

(eiπ− t2

2(to2−iD) + e−
(t−s)2

2(to2−iD) ). (8.1)

The phase difference between pulses is taken to be a step function. The component

pulses are separated by s, and D designates the group velocity dispersion (GVD). Both

models are equally good approximations as they are successfully used as an ansatz of

ASDM solitons in variational approximations [2]. As an odd HG pulse experiences

GVD, the pulse broadens but its shape is still HG. As the result, a stretched HG intensity

profile has a constant ratio of the separation between envelopes and the duration of one

envelope (s/∆t)) which is ∼1.73. While the HG model describes the separation between

two envelopes (pulses), the bounded DM solitons model does not provide the separation

information. However, it is useful to understand the ASDM soliton behavior with a

non-π phase difference which cannot be analyzed conveniently in the HG model. In this

letter, both models are used to analyze interesting bounded DM solitons from a fiber

laser.

The bi-soliton [3] and the temporal soliton-molecule [4] are related to ASDM soli-

tons. Distinct focuses and approaches lead to distinct terminologies, but a bi-soliton

with ∆φ = π and a temporal soliton molecule refer to fields that are identical in their

essential features. The potential importance of the ASDM soliton in optical telecommu-

nication was soon acknowledged. The data transmission rate and the timing jitter can

be improved significantly utilizing ASDM solitons [3, 5]. Recently, the generation of

ASDM solitons in a fiber laser with a strong dispersion map was predicted by numerical

simulations [6].
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Meanwhile, bound solitons in passively mode-locked fiber lasers have been re-

searched extensively. Motivated by the theoretical predictions of bound solitons of the

Ginzburg-Landau equation (GLE) [7, 8], Tang et al. demonstrated bound solitons in a

mode-locked soliton fiber ring laser [9]. Since then, a variety of bound solitons have

been observed in soliton fiber lasers. Bound solitons with ∆φ = π would seem to be

closely similar to the ASDM soliton, but they evolve in fundamentally-different ways.

Bound solitons of the GLE are static solutions with constant pulse duration and separa-

tion everywhere in the cavity. Experimentally-observed pulse separations are typically

∼10 times the pulse duration. This phenomenon is consistent with the theoretical predic-

tion of bound soliton pair formation with slightly-overlapping solitons [7]. In contrast,

the ASDM soliton is a bound pair of breathing DM solitons. As the ASDM soliton

propagates, it is quite possible for the (chirped) pulse duration to become much larger

than the pulse separation. Even though chirped DM solitons overlap substantially, the

temporal intensity is zero at the center of the two DM solitons owing to ∆φ = π. Bound

solitons were also observed in a stretched pulse fiber laser [10, 11]. Although many

aspects of these bound pulses were elucidated, a bound state with ∆φ = π has not been

reported. Furthermore, the pulse separation and/or the duration were too large to allow

appreciable overlap between even the stretched pulses. To date, ASDM soliton evolution

in a fiber laser has not been reported.

In this chapter, we report evidence of ASDM solitons in a passively mode-locked

fiber ring laser. The pulse from the fiber laser is consistent with the ASDM soliton

descriptions of bounded DM solitons with ∆φ = π and an appropriate separation. ASDM

solitons only occur within a narrow range of net cavity dispersion values.

131



1% coupler

output 1

Yb-doped

fiber

PBSisolator

WDM

HWP

QWP QWP
collimator collimator

SMF SMF

600/mm

gratings

980nm

pump

output 2

Figure 8.1: Experimental setup: QWP: quarter-waveplate; HWP: half-waveplate;
PBS: polarizing beam-splitter; WDM: wavelength-division multi-
plexer.

8.2 Experimental

Experiments were performed with the soliton fiber laser shown schematically in Figure

8.1. The fiber section consists of 410 cm of SMF followed by 60 cm of Yb-doped

fiber and another 130 cm of SMF. All fibers have normal dispersion with a 6-µm core

diameter. After the fiber section, nonlinear polarization evolution (NPE) provides self-

amplitude modulation. The main output (output 1) is taken directly from the polarizing

beam splitter, which is the NPE ejection port. A double-pass 600 lines/mm grating

pair provides anomalous dispersion, and the net cavity GVD is -0.038 ps2. The pulse

repetition rate is 30 MHz. A 1% coupler is placed at the middle of the fiber cavity

(output 2) to monitor the evolving spectrum. The output pulse train is monitored with

a photodetector down to ∼300 ps, and the pulse autocorrelation (AC) is monitored for

delays up to ∼100 ps.

Fundamental DM soliton (i.e., the lowest-order symmetric soliton) operation is ob-

tained easily by adjusting the waveplates. The bound state of DM solitons, which

matches the description of the ASDM soliton [2], is produced by adjusting the net GVD,
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(a) (b)

(c) (d)

Figure 8.2: Experimental result: (a) main output spectrum (dotted: output 2 spec-
trum),(b) chirped interferometric AC, (c) dechirped interferometric
AC, (d) dechirped interferometric AC (grey rectangular region in (c),
periodic vertical lines indicate the period of fringes).

the pump power and waveplates carefully (Figure 8.2). With ∼100 mW pump power, the

output power is 10 mW, which corresponds to ∼0.3 nJ pulse energy. The power spectrum

develops a pronounced dip in the center. The pulse from the main output is positively

chirped. The pulse is dechirped optimally by a grating pair that provides ∼ -0.042 ps2.

This value implies that the pulse reaches minimum pulse duration at two points in the

cavity, one in the anomalous-dispersion segment and one in the normal-dispersion seg-

ment, as expected for a DM soliton. The dechirped interferometric AC with three peaks

(Figure 8.2(c)) indicates a doubly-peaked intensity profile. The component pulses are

145 fs in duration and ∼350 fs apart. The power spectrum and autocorrelation would

suggest ∆φ = π between the pulses, and this is confirmed in the fringes of the AC (Figure

8.2(d)).
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A complete characterization of the electric field of this type of pulse is desirable. In

particular, verification of the ∆φ between the bound pulses would be valuable. Second

harmonic generation frequency-resolved optical grating (SHG FROG) available in our

laboratory cannot resolve the ∆φ, due to the fundamental phase ambiguity in the mea-

surement technique [12]. Hause et al. recently developed a technique to retrieve the in-

tensity and phase of this kind of pulse, but a sophisticated experimental setup is required

[13]. In the absence of a direct measurement, we decided to compare experimental and

theoretical ACs based on bounded DM solitons model (Equation 8.1) to assess the claim

of the ∆φ = π. Theoretical ACs are created by substituting the experimentally-observed

parameters to = 87 fs, s = 350 fs and varying the GVD value in Equation 8.1. Results

are shown in Figure 8.3.

The tails of the tightly-bound DM solitons overlap. The intensity in the overlapping

region, which influences the AC trace, is sensitive to the phase difference. For exam-

ple, ACs with ∆φ = π/2 (Figure 8.3(a) and (b) insets) are quite different from those

with ∆φ = π. With ∆φ = π, the theoretical AC has three clear lobes, with near zero

intensity between lobes. The experimentally AC, which matches very well with the the-

oretical AC envelope (Figure 8.3(b)), shows the expected behavior with close to zero

intensity between lobes (Figure 8.2(c and d)). The temporal profile of the chirped pulse

directly from the fiber cavity can be calculated. With D = 0.042 ps2 (the magnitude of

dispersion needed to dechirp the pulse), pulses are stretched to ∼815 fs, with ∼ 350-fs

separation. Even though the pulses overlap significantly, due to ∆φ = π, the combined

temporal intensity profile shows two separate envelopes with ∼355 fs durations and a

∼630 fs separation. The calculated s/∆t ∼1.77 agrees very well with 1.73 of the HG

model. The s/∆t ∼2.41 for the dechirped case is still reasonably close to the HG model

prediction. Again, the calculated AC of bounded chirped Gaussian pulses matches very

well with the measured AC trace (Figure 8.3(a)). From the good agreement between
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(a)

(c)

(b)
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Figure 8.3: (a) Chirped interferometric AC and (b) dechirped AC; grey: exper-
imental ACs of Figure 2, black: calculated AC envelope for bound
Gaussian pulses, insets: calculated AC envelopes with π/2 phase
difference, (c) calculated intensity ACs for chirped bound Gaussian
pulses; bottom: D = 0, middle: D = -0.05 ps2, top: D = -0.07 ps2,
(d) experimental intensity ACs of chirped pulses with the same GVD
values as in (c).

the calculated ACs from Equation 8.1 and the measured traces (Figure 8.3(a and b)),

we conclude that ∆φ ∼ π and the separation between pulses agrees with that of the HG

pulse. The measured pulse shape, ∆φ ∼ π, s/∆t, and observed characteristic evolution

are consistent with the ASDM soliton [2]. ACs of a highly-chirped ASDM soliton (Fig-

ure 8.3(d))) still match the calculated ACs (Figure 8.3(c)) of Equation 8.1 with an ideal

phase profile. This indicate that the phase difference is close to an ideal step function.

ASDM solitons are only observed with the net cavity GVD in a narrow range, within

± 0.005 ps2 of -0.038 ps2. In contrast, ordinary DM solitons can be observed for a wide
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range of anomalous dispersion. Extensive searches for the ASDM soliton pulses were

made at each dispersion value, but the ASDM soliton was only found in the stated

narrow range. Similar investigations were performed with other fiber lasers in our lab-

oratory, with a similar conclusion: although solitons can be generated for a wide range

of dispersions, ASDM solitons only seem to form near a single dispersion value that is

particular to the details of the laser.

8.3 Conclusion

To summarize, we have demonstrated a ASDM soliton generation from a Yb-doped

fiber laser with a strong dispersion map. The measured pulse shape, ∆φ ∼ π, s/∆t, and

the characteristic evolution are consistent with the ASDM soliton. Future work could

include direct measurements of the pulse intensity and phase, as well as an investigation

of the occurrence of ASDM solitons only at a fixed dispersion value. The ASDM soliton

fiber laser is a realization of an interesting higher-order DM soliton in a feedback system

with possible applications of ASDM solitons in optical telecommunications.
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CHAPTER 9

NONLINEAR CHIRPED-PULSE AMPLIFICATION (CPA)1

In this chapter, theoretical study of the chirped-pulse amplification (CPA) system

with high nonlinearity and third-order dispersion (TOD) is described. Interestingly, with

a substantial ΦNL and proper TOD, the final amplified pulse duration and quality are

improved. This chapter provides the theory to optimize the CPA system performance by

manipulating the ΦNL and TOD of the CPA system.

9.1 Introduction

It is common knowledge that nonlinear phase shifts (ΦNL) can lead to distortion of opti-

cal pulses. In fiber, optical pulses experience small mode field area and a long propaga-

tion distance, conditions that are conducive to the generation of large ΦNL. Therefore,

building a high energy (> µJ) femtosecond fiber amplifier is a nontrivial task.

Chirped-pulse amplification (CPA)[2] is the most effective method to date to

avoid excessive ΦNL, and thereby produce high energy femtosecond pulses in a fiber

amplifier.[3, 4] Until the last year, it was believed that residual third-order dispersion

(TOD) due to any mismatch between stretcher and compressor dispersions would de-

grade the amplified output pulse quality. This is true in linear propagation. CPA sys-

tems were carefully designed to minimize residual TOD. As a result, a grating pair

stretcher and a compressor with the same type of grating pair became a common fiber

CPA configuration. Even though fiber stretchers would offer major practical advantages

such as environmental stability, compactness, and trivial alignment compared to a grat-

ing stretcher, they were avoided in fiber CPA system because the residual TOD would

1Most of the results presented in this chapter have been published in Ref [1]
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substantially broaden the output pulse.

Recently, Zhou et al.[5] and Shah et al.[3] showed that substantial residual TOD

can help the output pulse quality in the presence of a substantial amount of ΦNL in fiber

CPA. According to these works, fiber CPA system design can be much more flexible by

manipulating residual TOD with different combinations of stretchers and compressors.

For example, the combination of a fiber stretcher and a grating compressor can improve

the pulse quality, while offering major practical advantages over grating pair stretcher in

case of a high gain with nonzero ΦNL.[5]

The so-called cubicon amplifier of Shah et al. is straightforward to understand.[3]

Since the pulse is highly chirped in a stretcher, the power spectrum profile follows

the temporal profile.[6] Therefore, the nonlinear phase shift in the frequency domain

(ΦNL(ω)) (accumulated mainly in the gain fiber) has the same shape as the spectrum,

which is made asymmetric with a filter. As a result, substantial residual TOD can be

compensated by asymmetric ΦNL(ω), and this leads to better output pulse quality. Obvi-

ously, the spectrum shape depends on the sign of the TOD. Fiber amplifiers with pulse

energies of ∼100 µJ and pulse durations of ∼650 fs have been demonstrated with the

cubicon approach. [3]

The work of Zhou et al. is fundamentally different.[7] The compensation of ΦNL

by residual TOD works even with a completely-symmetric spectral profile. A highly-

chirped symmetric spectrum generates a symmetric ΦNL(ω) during amplification, which

cannot compensate the anti-symmetric cubic phase of residual TOD. However, higher

peak power is achieved by manipulating the residual TOD and ΦNL only. This process

applies to arbitrary spectral shapes, so requires no filtering, and remarkably, is inde-

pendent of the sign of the residual TOD. ΦNL∼10π are not only tolerable, but will be

desirable. These values were considered disastrous in the context of CPA prior to the
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works of Shah et al. and Zhou et al. In simple terms, the nonlinear phase shift implies

increases in pulse energy by the same factor, i.e., ∼30.

Our goal is to design fiber amplifiers that achieve maximum peak power. Optimiza-

tion of a nonlinear CPA system is a complicated, multivariable problem. It would be

impractical to do it through numerical simulations alone. We introduce an approximate

analytical model that can be used to survey the relevant parameter space. This model

also provides some insight into the compensation of nonlinearity by TOD. Once the most

promising ranges of parameters are found for a given application, numerical simulations

will be used to refine and quantify the conclusions. This paper is organized as follows:

In section 2, the simple CPA model is introduced. In section 3, the compensation of

ΦNL by residual TOD in CPA is discussed. Section 4 discusses how to optimize the CPA

output performance by manipulating the design parameters. Section 5 summarizes the

conclusions.

9.2 CPA model

Since a CPA system is quite complicated, numerical simulations are usually performed

to get the final theoretical output. However, we can exploit the fact that the pulse is

highly chirped in the stretcher, to simplify the analysis under a range of reasonable as-

sumptions. The model assumes the ideal conditions of CPA, which are listed below.

1) The input pulse is transform-limited

2) The input pulse peak power is not enough to induce significant ΦNL in the stretcher

3) The input spectrum is not changed due to ΦNL in CPA

140



4) GVD parameter(β2) is much larger than TOD parameter(β3) in the stretcher

5) The amplifier gain spectrum is flat (i.e. infinite gain spectrum bandwidth)

6) Raman scattering, self-steepening, and fourth- and higher-order dispersion are

negligible

7) Residual GVD and residual TOD are independent parameters

Residual GVD and residual TOD are the difference between the stretcher and the

compressor in the absence of nonlinearity. Of course ΦNL(ω) has a quadratic and a cubic

term in a Taylor expansion, which will act just like linear GVD and TOD. However, in

this paper, GVD and TOD refer to the linear dispersions from the stretcher and the

compressor, not the Taylor expansion terms of ΦNL(ω). From this point on, residual

GVD and residual TOD will be referred to simply as GVD and TOD, respectively. GVD

and TOD can be defined mathematically in terms of β2 and β3 as GVD =
∫ L

0
β2(z)dz and

TOD =
∫ L

0
β3(z)dz where L is the total CPA propagation distance.

Most of the assumptions are to force the CPA output spectrum to be same as the

input spectrum. Assumption 2 states that the linear chirping is dominant, so that sub-

stantial ΦNL is not enough to induce the spectrum broadening. Of course, the validity of

this assumption suffers as ΦNL increases. Since the goal of a CPA system is to reduce

ΦNL during the amplification, the assumption can be made valid by introducing the ap-

propriate amount of pulse stretching. In a CPA system, spectral broadening is roughly

proportional to the nonlinear phase shift divided by the stretching ratio. With typical

stretching ratios of ∼1000 or more, even ΦNL ∼ 10π produces negligible broadening.

Assumption 5 is an ideal amplification condition, again to keep the spectrum invari-
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ant. An important consequence of assumption 5 is that the dispersion terms become

significantly simpler, with zero dispersion induced by the gain. In practice, this is a

good approximation when the gain spectrum is much broader than the pulse spectrum.

Ytterbium (Yb) doped gain fiber has large gain bandwidth of 30∼60nm[8, 9] to support

∼100 fs pulse amplification.[10] However, even with a large gain bandwidth, spectrum

narrowing occurs as gain increases. Therefore, the assumption also implies that gain-

narrowing is negligible. This assumption also keeps the chirping linear. Therefore, the

temporal profile and the spectral profile have same the same shape since the pulse is

highly-chirped:

ΦNL ∝ I(t) ∝ I(ω)ΦNL(ω) = ΦNLI(ω) (9.1)

I(ω) is the power spectrum with the pulse peak power normalized to one. Equation 9.1

simply states that ΦNL(ω) is just the power spectrum normalized by the peak power and

multiplied by ΦNL.

Assumption 2 precludes any ΦNL which may cause the distortion of the spectrum.

We assume that GVD and TOD are independent and optimize accordingly. In traditional

CPA systems, GVD and TOD are coupled since the ratio of TOD and GVD parameters

(β2/β3) is fixed in the stretcher and the compressor. However, stretchers and compressors

can be designed for arbitrary values of the ratio of TOD to GVD. The ready availability

of efficient reflection grisms based on stock components [11, 12] provides access to

TOD/GVD values over a huge range, roughly from 0 to 40 fs.

Since the spectrum is constant, nonlinear and linear operators commute. Thus, pulse

propagation through the CPA system can be modeled by simply adding spectral phases,

without considering the order of operations. For a given input pulse, the CPA operation
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can be effectively represented by a single Fourier transform operation. The amplified

pulse temporal profile can be expressed as

h(t) =

√
G
2π

∫ ∞

−∞
Hi(ω)exp(i(D2ω

2 + D3ω
3)) × exp(iΦNLI(ω))exp(−iωt)dω (9.2)

In Equation 9.2, h(t) is the output temporal profile, Hi(ω) is the input pulse spectral

profile. D2 and D3 are second and third order dispersion factors defined as D2 = GVD/2

and D3 = TOD/6, respectively. G is the intensity gain which is just a multiplicative

factor due to the assumption of infinite gain bandwidth. exp(iΦNLI(ω)) is the nonlinear

phase shift term according to Equation 9.1.

Equation 9.2 is already quite simple. However, G and ΦNL are not totally indepen-

dent since high G usually implies high ΦNL. However, ΦNL and G are not directly related

in CPA. The relative profile with the pulse energy normalized to the initial input pulse

energy is introduced:[5]

hrel(t) =
h(t)

PAi
√

G
(9.3)

PAi is the input pulse peak amplitude. From the relative output temporal profile, one

can calculate the relative peak power (RPP) which is the maximum value of |hrel(t)|2.

In an ideal CPA with ΦNL = 0, flat gain spectrum, zero GVD and zero TOD, the am-

plified pulse will have the original input pulse shape. Therefore, for an ideal case, the

output pulse RPP is one. RPP only decreases as CPA conditions deviate from the ideal

conditions, unless the pulse compression which requires the spectral broadening occurs.

Since spectral broadening is not considered in the model, the best possible output RPP

of the CPA model is one. Therefore, the RPP is a useful indicator of how close the
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performance is to that of ideal CPA.

An obvious question to be considered is how the output absolute peak power (APP)

can be treated theoretically. The APP is what really determines the CPA performance. It

is not too difficult to handle the relationship between ΦNL and G theoretically to calculate

the output APP. However, in this paper, we will focus on understanding RPP because it

contains enough information to optimize CPA performance.

There are several natural merit function that could be chosen. RPP describes CPA

performance well for applications that benefit from high peak power, regardless of the

detailed pulse shape. Experimentally, RPP can also be optimized easily by maximizing

the autocorrelation signal. Of course, some applications require other pulse qualities

such as a clean pulse shape. The analysis in this paper does not suggest optimizing

conditions for other merit functions. Several other common merit functions will be

discussed briefly in later sections.

Figure 9.1 shows that the approximate model is quite accurate for a useful range

of parameters of nonlinear CPA. A split-step Fourier method numerical simulation [13]

with a parabolic gain approximation is used to predict the output of a Yb fiber CPA

system with a fiber stretcher. For a relatively low nonlinear phase of ΦNL = 2π, the

numerical simulation result and the CPA model result are almost indistinguishable. Even

with a quite high nonlinear phase of ΦNL = 10π, the results are quite close.
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Figure 9.1: Comparison of the CPA model and the split-step Fourier method nu-
merical simulation for 150 f s Gaussian input. The CPA system is con-
sisted of 2m gain fiber (60nm gain bandwidth) and 600/mm grating
pair compressor. (a) 100m SMF stretcher with ΦNL = 2π, (b) 400m
SMF stretcher with ΦNL = 6π.

9.3 Mechanism of compensation of ΦNL by TOD

9.3.1 Pulse evolution with linear dispersion only

The compensation of ΦNL by TOD, without filtering to produce an asymmetric spectrum,

is counter-intuitive. It is conventional wisdom to make the spectral phase as flat as

possible to achieve better pulse quality. Adding an anti-symmetric cubic phase of TOD

does not make the phase flatter, but adding TOD does improve the peak power with a

shorter pulse duration. The RPP definitely increases when an appropriate amount of

TOD is added for given ΦNL (Figure 9.2(a)). Figure 9.2(b) shows the spectral phase

when TOD is added. A fully-symmetric phase spectrum produced by GVD and ΦNL(ω)

is adjusted by adding anti-symmetric TOD. Around the central wavelength, the phase is

flattened on the short-wavelength side, but at the expense of the long-wavelength side.

Thus, the phase does not get flatter by adding TOD.

To gain insight into the compensation mechanism, linear pulse propagation will be
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Figure 9.2: CPA output RPP improvement by adding TOD for 150 f s Gaus-
sian input with ΦNL = 2π (a) Relative Intensity (b) Phase in wave-
length domain Dotted line: GVD=55, 290 f s2, TOD=0 Solid line:
GVD=55, 290 f s2, TOD=5.09 × 107 f s3

discussed first. The pulse evolution can be pictured as a linearly chirped pulse undergoes

the TOD broadening. In the case of a Gaussian input pulse, the CPA model with ΦNL = 0

can be solved analytically in terms of an Airy function.[14] Figure 9.3 shows the result.

Even for linear dispersion only, it shows the same phenomenon as the CPA does. The

addition of the cubic phase improves the peak power of the pulse with a fully-symmetric

parabolic phase due to GVD. The improvement of the peak power is quite significant

and full-width half-maximum pulse width (TFWHM) is clearly shorter as shown in Figure

9.3(a).

Some measures of pulse quality may show degrade even though the peak power is

improved by adding TOD. As an example, the root-mean-square pulse width (TRMS )is

shown in Figure 9.3(b). As the TOD reshapes the pulse, the conventional TFWHMis

inadequate to characterize the pulse. However, TRMS can be calculated easily. Figure

3b shows that as the TOD increases, TRMS increases monotonically, but slowly, while

the peak power improves significantly (Figure 9.3(a)). The increase in peak power and

decrease in TFWHM are accompanied by a small sacrifice of pulse quality, as measured

by TRMS .
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Figure 9.3: Linearly chirped pulse peak power improvement by adding TOD for
150 f s Gaussian pulse (a) Relative (b) TRMS vs. TOD Dotted line:
GVD=20, 000 f s2, TOD=0 Solid line: GVD=20, 000 f s2, TOD=2.4 ×
106 f s3.

The physical picture of this phenomenon is therefore as follows: Even though the

sign of the GVD is irrelevant, positive sign of GVD as for a CPA system is assumed.

When the pulse is positively linearly chirped, it broadens with high frequencies shifted

to positive time, while low frequencies to negative time. Adding positive TOD will

push both high and low frequencies to positive time. Therefore, as shown in Figure

9.3, the leading edge of the pulse shrinks and the trailing edge starts to show a tail with

a complicated interference pattern. This redistribution of the energy makes the peak

power higher and TFWHM shorter. However, TRMS gets longer because TRMS is quite

sensitive to the small amount of energy in the tail. Adding negative TOD will have the

same effect on the peak power, but it will send the tail in the negative-time direction.

These arguments suggest that the TOD required to maximize the peak power is pro-

portional to the GVD. The peak power improvement with TOD occurs only when the

pulse is chirped with nonzero GVD. If the GVD is zero, the condition to achieve the

highest peak power is zero TOD, i.e., back to the original transform-limited pulse. Well-

known pulse shapes such as Gaussian and hyperbolic secant definitely have maximum

peak power when they are transform-limited. This is not true for all pulse shapes. For
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example, a pulse with a parabolic spectrum can have higher peak power with nonzero

TOD, even with zero GVD, because of the temporal side lobes. One of the side lobes

can be shifted toward the pulse peak with TOD, which may yield a higher peak power.

Unfortunately, the exact amount of TOD to maximize the peak power of a linearly

chirped pulse is difficult to determine analytically. Even the analytically solvable Gaus-

sian pulse evolution under GVD and TOD [14] is difficult to maximize peak power

analytically owing to the complicated Airy function. However, the limiting case of a

highly linearly-chirped pulse ( |GVD|
TFWHM

2 → ∞) can be analyzed approximately (Appendix

A). Equation 9.4 and Table 9.1 show the relationship among GVD and TOD that maxi-

mizes the peak power when |GVD|
TFWHM

2 → ∞ for various pulses.

|TOD/GVD|
TFWHM

= k (9.4)

Table 9.1: Asymptotic k of Equation 9.4 for various input pulses shapes in linear
dispersive propagation

Input Pulse k as ( |GVD|
TFWHM

2 → ∞)
Gaussian 1.040
Sech 1.457
Parabolic spectrum 0.653

The absolute value sign in Equation 9.4 means that signs of GVD and TOD do not

alter the pulse peak power. A Gaussian pulse evolution is studied to show the validity of

Equation 9.4. Figure 9.4 is the relationship between the two dimensionless parameters

( |GVD|
TFWHM

2 and |TOD/GVD|
TFWHM

) that maximize the Gaussian pulse peak power.

Figure 9.4 clearly shows that the value of |TOD/GVD|
TFWHM

that maximizes pulse peak power

approaches k = 1.04 as |GVD|
TFWHM

2 increases. The graph approaches the ideal condition
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quickly even though the analysis was performed for limiting case of an the infinitely-

chirped pulse. For example, at |GVD|
TFWHM

2 ≈ 5, which is equivalent to L ≈ 13LD (i.e. β2

=const.), |TOD/GVD|
TFWHM

is within 5% of the limiting case approximation. It is equivalent to

the GVD introduced by ∼ 57m single mode fiber (SMF) for a 100-fs Gaussian pulse,

which is quite a realistic setup in experiments.

9.3.2 Pulse evolution with GVD, TOD and ΦNL in CPA

Extending the linear case, compensation of nonlinearity by TOD can be described as

follows. With a substantial ΦNL, the output pulse is almost always chirped, since ΦNL(ω)

and the phase from GVD rarely cancel each other perfectly. The quadratic phase of

ΦNL(ω) is to be canceled by GVD from the stretcher and the compressor, but remaining

higher order phase terms of ΦNL(ω) will severely chirp the pulse. Higher peak power

and shorter TFWHM are obtained by adding appropriate amount of TOD, even though

the chirp is not linear. Similar phenomena are observed in soliton-effect compression.

Chan et al. observed that there is nonzero β3 which optimizes higher order soliton-effect
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compression for given β2.[15] The mechanism of this phenomena is exactly the same

physical mechanism of compensation of ΦNL by TOD.

We chose to investigate the conditions to optimize the peak power, since the peak

power is enough information of pulse quality for applications requiring high peak power

regardless of detailed pulse shape. It is also quite easy to optimize the peak power in the

experiment by optimizing the autocorrelation signal peak power.

It is expected that the total phase shift, which is the summation of the GVD phase

and ΦNL(ω), determines the required TOD to maximize the peak power. Once ΦNL is in-

cluded, the CPA model cannot be solved analytically, but a numerical Fourier transform

has to be performed to obtain the relations among GVD, TOD and ΦNL to optimize the

CPA output RPP.

9.4 CPA performance optimization

Dimensional analysis[16]allows the results of the analytic model to be expressed in

terms of five dimensionless parameters: |GVD|
TFWHM

2 , |TOD/GVD|
TFWHM

, TFWHM f inal
TFWHM initial , ΦNL and RPP. The

scaling of the results to different situations is then clear.

The complexity of the optimization is illustrated by Figure 9.5, which shows the

variation of the RPP with GVD and TOD, for fixed ΦNL = 6π. It is clear that the

RPP is maximized with nonzero TOD with substantial values of ΦNL. Another crucial

point is that the RPP function has a complicated structure, with multiple local maxima.

Therefore, a CPA system needs to be designed carefully to find the global maxima and

exploit the full potential of compensation of ΦNL by TOD.

The reduction to dimensionless parameters allows the behavior of a nonlinear CPA
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Figure 9.5: 3-D plot of CPA RPP with TOD and GVD as independent variables at
ΦNL = 6π.

system to be captured in a set of universal curves, as shown in Figure 9.6.

Graphs of the optimum values of the independent (dimensionless) parameters as a

function of ΦNL are shown in Figure 9.6. The graphs illustrate the relationship among the

four dimensionless parameters to maximize the output RPP. For example, from Figure

9.5, one can see that the RPP optimum for a Gaussian pulse with ΦNL = 6π occurs at

|GVD|
TFWHM

2 =10.79, |TOD/GVD|
TFWHM

=0.71. The corresponding RPP=0.45, which also can be found

in Figure 9.6.

Figure 9.6(a) shows that as ΦNL increases for given pulse duration, more GVD is

necessary to optimize the RPP. Positive GVD is necessary to cancel the pulse-like shape

of ΦNL(ω). Figure 9.6(b) shows that |TOD/GVD|
TFWHM

shows asymptotic behavior similar to

Figure 9.4, but with different asymptotes (Appendix B). Hence, Equation 9.4 is still

applicable for nonzero ΦNL, but |TOD/GVD|
TFWHM

approaches different k values as ΦNL → ∞.
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Figure 9.6: CPA dimensionless parameter relationship optimizing the output RPP

Table 9.2 shows the asymptotes for various input pulses for an ideal CPA system. Figure

9.6(c) and 9.6(d) show that the RPP and TFWHM degrade as ΦNL increases, as expected.

Table 9.2: Asymptotic k of Equation 9.4 for various input pulses shapes in an ideal
CPA system

Input Pulse k as (ΦNL → ∞)
Gaussian 0.779
Sech 1.093

It is important to recognize that the trends of Figure 9.6 will eventually be invalid as

the model assumptions will be violated at some point. The violation may come sooner

or later according to the CPA design parameters. Although the data in Figure 9.6 only

goes up to ΦNL = 6π, We typically found that the model is valid up to ΦNL = 10π.

However, we believe that as far as model assumptions are valid, graphs can be extended
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well beyond ΦNL = 10π. Since the purpose of this study is to explain the general

behavior of CPA with a small number of parameters, details of the CPA design will

not be covered. However, one can expect the results of Figure 9.6 to be valid as the

CPA design gets close to the ideal CPA condition. Once the constant spectrum shape

assumption is violated due to the finite gain spectrum shape, the CPA behavior is too

complicated to be handled with a simple CPA model.[17]

From the four graphs of Figure 9.6, one can design a CPA system that optimizes

the output RPP. For example, starting with a pulse with known TFWHM and target ΦNL

which can be calculated based on the available or possible stretching ratio, the target

pulse energy and the gain fiber properties, one can find the required GVD from Figure

9.6(a) and the required TOD from Figure 9.6(b). One can also extract the RPP and

TFWHM of the CPA output from Figure 9.6(c) and Figure 9.6(d), respectively when the

CPA is designed with required GVD and TOD.

Figure 9.7 shows how much RPP improvement is expected with appropriate GVD

and TOD combination over GVD only (i.e. TOD=0). Figure 9.7 clearly shows that ma-

nipulating TOD improves RPP and the improvement over the GVD-only case increases

as ΦNL increases. For example, for a Gaussian pulse with ΦNL = 6π, 30% better RPP is

expected with the correct amount of TOD. Of course, the real benefit of nonlinear CPA

comes from working with large nonlinear phase shift, which implies large pulse energy.

In linear CPA ΦNL is limited to ∼1, in which case the RPP ∼1. With ΦNL = 6π, the pulse

energy is ∼20 times greater. The RPP is reduced to ∼0.4, so the APP will be increased

by a factor of 20×0.4 = 5.

Another benefits of nonlinear CPA with TOD is the possibility of higher pulse energy

with same pulse quality. It is difficult to design a CPA system for high energy pulses

with very low ΦNL, because the stretching ratio is practically limited. The CPA system
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may need to accommodate ΦNL > 1 to reach the desired pulse energy. For example,

we assume that the CPA system with a Gaussian pulse input has to accumulate ΦNL =

2π to reach the desired pulse energy with zero TOD. Figure 9.7(a) shows that with

appropriate TOD, ΦNL can be increased up to 6π without sacrificing RPP. This means

that the appropriate TOD increases the pulse energy ∼3 times maintaining the pulse

quality.

There are many choices of merit function for optimization of CPA. We chose to

optimize the peak power because it is the parameter that is fundamentally limited, being

directly related to the nonlinear phase shift. Experimentally, the peak power is easily

and directly monitored through the autocorrelation signal, or related diagnostics such

as frequency-resolved optical grating. In addition, peak power is the most important

parameter in some applications, such as parametric generation of new colors.

There are other application that favor the shortest or cleanest pulses, and for those,

the RPP may not be the best choice. It is reasonable to ask about the behavior of other

merit functions. We will not provide a systematic answer here, but we will discuss a

couple examples of alternative merit functions. When it is desirable to characterize an

irregularly-shaped pulse with a single parameter, TRMS is often used. As mentioned

above, TRMS increases with TOD. TRMS is very sensitive to even a small amount of

energy in a wing or tail of a pulse, and so might be most appropriate for applications

that place a premium on minimal pre- or post-pulse energy.

Another common measure of pulse quality is the fraction of the energy that resides

within TFWHM of the pulse. This fraction is sometimes normalized to the value for a

Gaussian pulse with same TFWHM. The pulse quality is plotted verses ΦNL in Figure

9.8(a). Comparison to the analogous graphs of Figure 9.7 shows that TOD provides

less benefit with regard to this merit function. Although adding TOD shows less benefit
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Figure 9.7: CPA RPP improvement with appropriate design parameters. Dotted
line: CPA RPP optimized with GVD only(TOD=0) Solid line: CPA
RPP optimized with GVD and TOD.

according to the merit function, adding TOD is definitely beneficial overall because the

pulse quality is maintained while the peak power is increased. The autocorrelations of

the pulses produced with ΦNL = 6π (Figure 9.8(b)) do show the benefits of TOD: the

pulse is slightly narrower, and the side lobes and pedestal are reduced significantly with

the addition of TOD.

Of course, one can devise a metric that is most appropriate to a given application. A

composite metric such as product of peak power and some measure of the pulse quality

might also be valuable.

The benefits of mismatched stretcher and compressor dispersions may well go be-

yond the estimate above. With a grating stretcher, the stretching ratio is limited due to

practical reasons. In contrast, with a fiber stretcher, the stretching ratio is believed to be

unlimited and therefore, CPA will experience much less ΦNL for given gain. Therefore,

the pulse can be amplified with larger gain with substantially higher TOD, which will

help to get higher RPP. As a result, much higher APP can be obtained by the use of fiber

stretcher and grating compressor via compensation of ΦNL by TOD. Finally, the fiber
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Figure 9.8: Behavior of other FOM functions for a Gaussian pulse at RPP opti-
mization condition. a) Pulse quality FOM vs. ΦNL and b) Intensity
autocorrelation at ΦNL = 6π. Dotted line: CPA RPP optimized with
GVD only(TOD=0) Solid line: CPA RPP optimized with GVD and
TOD.

stretcher offers major benefits of ease of alignment and stability.

The choice of appropriate component to realize the theoretical design parameters

from Figure 9.6 is nontrivial, since some parameters are coupled in components. For

example, adjusting the distance of a grating pair compressor changes GVD and TOD

simultaneously even in different directions. Therefore, multiple iterations of CPA design

may be necessary to realize the target performance. In case the optimal condition is not

realizable due to some practical issues, one needs to go back to Equation 9.3 to calculate

the RPP using a realizable GVD and TOD combination of a CPA system. In this case,

several trials may again be necessary to extract the best realizable condition. Even with

sub-optimal values of GVD and TOD, it is still possible to achieve improved RPP than

that of the GVD-only case. The recent emergence of grisms as practical devices will

be very significant in this regard, as they allow a wide range of TOD/GVD ratios to be

implemented.[12] Experiments aimed at demonstrating the enhanced performance are

now being designed in our lab.
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9.5 Conclusion

In conclusion, the mechanism of the compensation of ΦNL by TOD in CPA is described

based on a simple theoretical model. The model predicts the output of a CPA system

under the assumption that the spectrum is not changed during the amplification process.

Nonlinear CPA, with substantial residual TOD and ΦNL, is theoretically shown to out-

perform linear CPA (as judged by the peak power), by an order of magnitude under

relevant conditions. The model described here is not limited to fiber devices, but is

applicable to any CPA system that satisfies the model assumptions. The model is used

to find the relationships between GVD, TOD and ΦNL to optimize the CPA output peak

power, in which the interplay of ΦNL and residual TOD plays a major role. Design

parameters and expected output performance of a CPA system can be extracted from

four graphs with dimensionless parameters. A natural subject for the future will be

extension of this model to nonlinear CPA in which substantial new spectral bandwidth

is generated.

In the case of fiber CPA, the study indicates that a fiber stretcher / grating compres-

sor CPA configuration can offer not only practical advantages but also performance im-

provement over a grating stretcher / grating compressor CPA configuration. We expect

that the combination of fiber stretcher and grating compressor will become the standard

configuration for fiber CPA.
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CHAPTER 10

FUTURE DIRECTIONS

In this chapter, future possible research directions for fiber lasers and amplifiers are

suggested.

10.1 Generating cubicons from fiber lasers with spectral filtering

Building a fiber CPA system is a nontrivial task due to the excessive ΦNL and the residual

TOD. As described in chapter 10, a cubicon [1] is a pulse with a specific triangular

spectrum shape to circumvent the excessive ΦNL and non-zero residual TOD problems

in the fiber CPA system. Typical cubicon spectra are shown in Figure 10.1.

A cubicon spectrum exhibits a characteristic asymmetrical triangular shape. Uti-

lizing cubicon CPA systems, pulses with ∼100 µJ pulse energies and ∼650 fs pulse

durations were generated [1]. Micromachining with the cubicon CPA output was also

demonstrated [2]. Even though the cubicon CPA system demonstrated the robustness

against the substantial ΦNL and the residual TOD, the cubicon is generated by a cum-

bersome spectral filtering of a well known symmetrical spectrum such as a Gaussian

or a hyper-secant. So far, cubicons are not generated directly from a fiber laser. Here,

Figure 10.1: Cubicon spectra. From [1]
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Figure 10.2: Cubicon spectrum generation experimental setup.

we suggest a future research direction of generating cubicons directly from a fiber laser

with an intracavity spectral filter. By inserting an asymmetric intracavity spectral filter-

ing component (gain narrowing + physical intracavity spectral filtering), a simple fiber

laser can generate pulses with characteristic triangular spectrum shapes.

To demonstrate the idea, a simple Yb-doped fiber laser with an intracavity grating

pair (Figure 10.2) is used. By inserting a razor blade to partially block the short wave-

length of the intracavity laser beam, triangular spectra are generated (Figure 10.3). As

the spectral filtering effect increases with more beam interception with the razor blade,

the laser output spectrum intensities gets weaker but the shape gets closer to the trian-

gular spectral shape of a cubicon.

The conventional cubicon, which is established by an external spectrum filtering,

is not adjustable conveniently. Therefore, the optimal performance (highest amplified

pulse energy without wave-breaking) is obtained by adjusting the pump power of the

CPA [1]. However, the cubicon directly from the laser cavity can be adjusted flexibly.

For example, the center wavelength and the shape of the spectrum is a function of the

spectral filtering strength as shown in Figure 10.3. Hence, the optimal performance
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Figure 10.3: Cubicon type of spectra directly from a fiber oscillator with an intra-
cavity spectral filter for a variety of spectral filtering strength.

can be found by adjusting the seed laser pulse shape with the maximum available CPA

pump power. Even though the given example is based on a fiber laser with a dispersion

map, similar spectrum shapes are also possible in ANDi fiber lasers. A CPA of cubicons

directly from simple fiber lasers will be an interesting research direction. The CPA of

cubicons directly from fiber lasers will be much simpler with a chance of an improved

performance.

10.2 CPA of the pulses from ANDi fiber lasers

Besides the cubicon and the SPM TOD compensation described in chapter 9, there is an-

other effective technique to overcome a substantial ΦNL in a CPA system with the resid-

ual TOD∼0 (i.e. a combination of a grating stretcher and a grating compressor). Once

the perfectly parabolic spectrum is highly chirped, the spectrum profiled maps into the

time profile. Therefore, when the highly chirped parabolic spectrum is amplified, ΦNL

converts into a linear chirping. Ideally, the excessive ΦNL is compensated by the external
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Figure 10.4: (a) Effect of the transfer function on (b) the initial Gaussian spectrum
for precompensation of gain narrowing. (c) New spectrum propa-
gates with the (d) result of an almost parabolic shape. From [3]

GVD and the amplified pulse can be dechirped to the Fourier transform limited pulse

even though the ΦNL that the pulse experience can be quite large. The parabolic spec-

trum amplification was demonstrated by Schreiber et al. [3]. Even though the parabolic

spectrum amplification worked conceptually and also experimentally, Schreiber et al.

pointed out there are two practical limitations in the technique. The first limitation is the

practical limitation of the parabolic seed spectrum generation. The similariton spectrum

is close to a parabola but it is not a perfect parabola. As the stretched similariton is am-

plified, the deviation from the perfect parabola will eventually cause a wave-breaking

due to the non-compensable ΦNL accumulation. The second limitation is the spectrum

distortion due to the gain narrowing effect. Once the spectrum is deviated from a perfect

parabola due to the gain narrowing, the CPA output pulse quality degrades quickly again

due to the non-compensable ΦNL.

To overcome the limitation due to the gain narrowing, Schreiber et al. suggested pre-

compensation of the gain narrowing [3]. The pre-compensation of the gain narrowing is

illustrated in Figure 10.4. The starting Gaussian spectrum (Figure 10.4(b)) is shaped by
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(a) (b)

Figure 10.5: Examples of possible ANDi fiber laser spectra for pre-compensation
of the gain narrowing.

the transfer function (Figure 10.4(a)). The resulting spectrum (Figure 10.4(c)), which

has a flat top shape, is amplified to have a almost parabolic spectrum (Figure 10.4(d)) at

the end of the gain fiber and therefore, the ΦNL converts into an almost linear chirping to

be compensated by the GVD. The CPA input spectrum (Figure 10.4(c)) is determined ac-

cording to the details of the amplifier. For example, if the gain narrowing effect is much

stronger than this particular case in Figure 10.4, the CPA input spectrum should be closer

to Figure 10.4(a) to balance the strong gain narrowing effect. The pre-compensation of

the gain narrowing in the CPA was demonstrated by Schimpf et al. [4] utilizing a liquid

crystal spatial light modulator to shape the spectrum in a desired shape. A liquid crystal

spatial light modulator is a cumbersome and expensive bulk optical component which

is against the advantage of a fiber medium. In this section, we like to point out that the

spectra from ANDi fiber laser are already close to pre-compensated spectra. Examples

of ANDi fiber laser spectra are given in Figure 10.5.

The Figure 10.5(a) shows a flat topped spectrum which is close to the Figure

10.4(c). As pointed out, spectrum in Figure 10.5(b) can be a good candidate for a

pre-compensated spectrum for a CPA system with a strong gain narrowing. Of course, it

will be a tremendous practical benefit if a simple ANDi fiber laser can do the function of
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the complicated liquid crystal spatial light modulator. Applying a variety of ANDi fiber

laser pulses with desired spectra as seed pulses for CPA systems will be an interesting

future research.

10.3 Intracavity TOD compensation by a detuned spectral filtering

Building a stretched pulse fiber laser [5] with near zero net GVD is an effective strategy

to generate very short femtosecond pulses. Once the net GVD approached to zero, the

nonzero net TOD eventually becomes a limiting factor for the pulse duration. As the

consequence, in stretched pulse fiber lasers, the compensation of the TOD and higher

order dispersions is necessary if the pulse duration is desired to be further improved.

Compensating higher-order dispersion in fiber lasers is a nontrivial task. Compensating

the TOD in the fiber laser is already quite challenging. By compensating the TOD of

the fiber with a grism (grating-prism) pair, 10-cycle pulses (∼30 fs), which still is the

shortest pulse duration record from fiber lasers, were obtained from a Yb-doped fiber

laser [6].

Since the Yb-doped stretched pulse fiber lasers usually have a bulk anomalous dis-

persive segment, adding a grism pair within the cavity is not such a problem. Replacing

the bulk anomalous dispersive segment by a grism pair does not effect the cavity in-

tegrity much. However, fiber lasers such as Er-doped fiber lasers can be in an all-fiber

format conveniently utilizing anomalously dispersive fibers. Introducing an intracav-

ity bulk component to compensate the TOD in such lasers is against the benefit of the

laser light guided in a fiber. To overcome the practical limitation, a key question to be

answered is if there is a fiber-integrated TOD compensation mechanism. Of course,

specially designed fiber (i.e. PCF) is a good candidate but it will introduce another
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complication of implementing a complicated and expensive fiber within a cavity.

Here, we suggest the fiber laser cavity TOD compensation by the gain dispersion.

The theoretical treatment of the gain dispersion up to the GVD term in a passive prop-

agation is well covered in Ref [7]. In case of an ideal Lorentzian gain, the TOD effect

of the gain can be conveniently expressed analytically by expanding the complex gain

up to the third order. The magnitude and the sign of the gain TOD depends on the peak

gain, the gain BW, and the detuning (pulse center wavelength - gain center wavelength).

Of course, in a laser cavity, it is usually true that the lasing wavelength matches the peak

gain wavelength. However, once a detuned spectral filter is introduced within the cavity,

its effect may be significant since the filtered spectrum will face the detuned gain profile.

Therefore, by adjusting the spectral filtering parameters, the magnitude and the sign of

the gain TOD may be suitable to perfectly or partially cancel the cavity TOD. So far,

the above discission is based on the ideal Lorentzian gain. However, for the asymmet-

ric gain profile may be more advantageous to cancel the cavity TOD. The gain profile

effect on the gain dispersion is hard to be predict analytically. However, experimental

results indicates that there is some process in action in the ANDi fiber laser to compen-

sate processes causing asymmetric mode-locked spectra. Those processes can be the

TOD, higher odd order dispersions, and asymmetric nonlinear effects. Among them ,

it is believe that the TOD is the dominant effect causing the asymmetric mode-locked

spectra.

The evidence of canceling the TOD is shown in Figure 10.6. The experimental setup

is same as Figure 2.6. Without a spectral filter, a Yb-doped fiber laser usually dis-

play asymmetric mode-locked spectra which are most likely caused by the cavity TOD.

Notice that the symmetry of the mode-locked spectrum changes while the lasing wave-

length was tuned by the spectral filter center wavelength adjustment (Figure 10.6(a)-(c)).
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Figure 10.6: Spectrum evolution according the spectral filter center wavelength
tuning.

One can look for a symmetric spectrum by tuning the spectral filter. The symmetric

spectrum indicates that asymmetric dispersion terms and nonlinear effects are somehow

reduced by the debunked spectral filtering action. To verify the gain TOD compensa-

tion mechanism experimentally, a capability to characterize the phase (i.e. SHG FROG)

will be essential. Once the mechanism is verified, numerous applications are awaiting

not only for oscillators but also for passive propagations. Generating short pulses from

stretched pulse fiber lasers by compensating the cavity TOD is an obvious good idea.

One may consider to apply this technique to reduce the residual TOD of the fiber CPA

system.

10.4 Generation of large pulse energies with short pulse durations

(<50 fs) from ANDi fiber lasers

In chapter 5, it was pointed out that the mechanism of short pulse generation from

ANDi fiber lasers is fundamentally different from that of the short pulse generation from

stretched pulse lasers. With a unique pulse shaping of the CPSF, a substantial ΦNL is

necessary to produce shorter pulses in ANDi fiber lasers. Therefore, one can conjecture

that the ANDi fiber laser can produce large pulse energies with short dechirped pulse

167



durations (i.e.<50 fs). In contrast, as the net GVD of the stretched pulse laser approaches

zero, the ΦNL and therefore the pulse energy have to be smaller to match the tiny net

GVD. As the result, generating short pulses with large energies is extremely challenging

in stretched pulse fiber lasers.

The simulation result in chapter 5 (Figure 5.2) indicates that pulses with ∼40 nJ and

∼30 fs dechirped durations are quite possible from ANDi fiber lasers. However, the

performance of the ANDi fiber laser is currently limited by the available pump power.

The laser performance is expected to be improved by providing more pump power but

with a SMF pigtailed pump diodes have a power limitation (∼700 mW currently).

A well known approach to overcome the pump power limitation is to use double

cladding (DC) fibers with proper pump fiber couplers. Multimode fiber pigtailed pump

diodes can provide tens of watts power easily. By pumping the primary cladding with a

multimode fiber coupler (i.e. a star coupler), the DC gain fiber can be pumped even up

to hundreds of watts power level. It will be an obvious good idea to build ANDi fiber

lasers with DC fibers to realize the simulation prediction (Figure 5.2) or a even better

performance.

10.5 Dissipative solitons of a Swift-Hohenberg equation in ANDi

fiber lasers

In chapter 3, it is pointed out that the pulses of ANDi fiber lasers behavior resemble the

dissipative solitons of the CQGLE (Equation 3.4). Even though the CQGLE approach

is successful to model (Yb-doped) ANDi fiber lasers, the CQGLE has an obvious lim-

itation. The main reason of the successful modeling by the CQGLE is the smooth Yb-
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Figure 10.7: Spectral filtering in the two models of a laser: a) CGLE and b) CSHE.
For parameters of the calculation, please see Ref [9]

doped fiber gain spectrum can be well approximated the second-order spectral filtering

term in CQGLE. For complicated gain spectra such as a Er-doped fiber with multiple

maximum gain peaks, even higher order spectral filtering effect should be considered for

a proper modeling. By adding the fourth-order spectral filtering effect to the CQGLE,

the equation becomes a complex Swift-Hohenberg equation (CSHE).

∂A
∂z

= gA + (
1
Ω
− i

D
2

)
∂2A
∂t2 + iγ2

∂4A
∂t4 + (α + iγ)|A|2A + δ|A|4A. (10.1)

The Equation 10.1 is same as the CQGLE except iγ2
∂4A
∂t4 term which designates the

fourth-order spectral filtering effect. The solutions of the CSHE are dissipative solitons

since the soliton solutions are determined by strong dissipative processes such as the

gain, the saturable absorption, and the spectral filtering. Even though some exact so-

lutions of the CSHE are found analytically, numerical simulations seem to be the only

reliable method to study the CSHE exhaustively. By solving fiber laser behaviors numer-

ically with the CSHE model, Soto-Crespo et al. proposed many interesting and unique

dissipative soliton solutions such as composite moving solitons and double pulses [9].

Soto-Crespo et al. used the spectral filtering curve in Figure 10.7(b) for numerical
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Figure 10.8: Birefringence spectral filter schematics to generate Figure 11.7(b)
type of spectral transmission curve

simulations. In this particular case, the fourth-order spectral filtering introduces a center

dip in the spectral transmission. Of course, it will be scientifically interesting to realize

dissipative solitons of the CSHE in fiber lasers. In fact, this unique spectral filtering

shape can be realized conveniently in ANDi fiber lasers with a Lyot filter setup. The

spectral filter setup is shown in Figure 10.8

The first birefringence filter provides 6 nm filter BW while the second one corre-

sponds to 12 nm spectral filtering BW. By adjusting waveplates and the orientation of

birefringence plates, spectral transmission curve close to Figure 10.7(b) can be realized.

The resulting spectral filtering curve is shown in Figure 10.9.

In fact, the ANDi fiber laser with the particular spectral filter was mode-locked for

many interesting modes. However, unique dissipative solitons of the CSHE such as

composite moving solitons or double pulses are not found yet.

10.6 Multipulsing characterization

Controlling the number of pulses and the separation between pulses in fiber lasers is

interesting not only for the scientific aspect of it but also for practical applications such

as the micromachining and the frequency comb generation. So far, the theoretical un-
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Figure 10.9: Measured spectral transmission of the experimental setup in Figure
10.8

derstanding of the multipulsing phenomena is rudimentary even for experts in lasers.

In chapter 8, an interesting aspect of controlling multipulsing states is investigated.

The multipulsing state can be controlled from a soliton bunch to a harmonically mode-

locked state by spectral filtering adjustment. This is a meaningful step to understand the

role of the spectral filtering in multipulsing operation modes. The quantization of the

separation between pulses is a quite interesting and may be already significant for some

applications. It is strongly believed that the fiber laser with controllable pulse numbers

and separations will find a variety of applications immediately. The mechanism which

determines the separation between pulses is not understood fully. However, by perform-

ing systematic experiments with ANDi fiber lasers, it is believed that one can recognize

variables (GVD, spectral filtering BW, spectral filtering detuning, etc.) which affect the

multipulsing operations. The current knowledge does not provide a viable explanation

of the characteristics of multipulsing operations. However, gathering systematic obser-

vations will eventually contribute in building fiber lasers with controllable multipulsing

states.
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APPENDIX A

PULSE PEAK POWER OPTIMIZATION ASYMPTOTIC BEHAVIOR WITH

LINEAR DISPERSION ONLY (GVD AND TOD)

Starting from a general transform limited input pulse hi(t), propagation of the pulse

in linearly dispersive media counting linear dispersion terms up to TOD can be ex-

pressed as follows.

h(t) =
1√
2π

∫ ∞

∞
Hi(ω)e(i(D2ω

2+D3ω
3)))e(−iωt)dω (A1)

Hi(ω) is obtained by Fourier transform of a known initial pulse temporal profile hi(t).

D2 and D3 are second and third order dispersion factors defined as D2 = GVD/2 and

D3 = TOD/6. GVD and TOD are residual dispersion terms in a CPA. Equation (A1)

can be integrated analytically for a Gaussian input pulse.[1] Even though the solution is

in a complete analytic form, it is not very useful for further analysis since it contains an

Airy function which is quite complicated. Due to the complexity of the Airy function,

it is hard to figure out some important characteristics of the pulse evolution such as the

pulse peak power. Furthermore, there aren’t known analytic solutions for different initial

pulse shapes. To circumvent the difficulty lies in the treatment of an Airy function, only

a special case of a high GVD case is considered in the analysis. Equation A1 can be

expressed as a convolution integral.

h(t) =
1√
2π

hi(t)
⊗

g(t) (A2)

where
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g(t) =
1√
2π

∫ ∞

∞
e(i(D2ω

2+D3ω
3)))e(−iωt)dω (A3)

Equation A3 can be solved analytically by substituting ω = (3D3)
1
3 u− D2

3D3
and using

the Airy function of the first kind identityAi(z) = 1
2π

∫ ∞
−∞ ei( 1

3 t3+zt)dt[2], the result is as

follows [3].

g(t) =
√

2πbei(A+Bt)Ai(−a − bt) (A4)

A, B, a and b are constants defined as follows.

A =
2D2

3

27D3
2 , B =

D2

3D3
, a =

D2
2

(3D3)
4
3

, b =
1

(3D3)
1
3

(A5)

Therefore, the pulse evolution due to GVD and TOD becomes as follows.

h(t) = b
∫ ∞

−∞
hi(t − t′)ei(A+Bt′)Ai(−a − bt′)dt′ (A6)

Note that the integral is close resemblance of a Fourier transform because of eiBt

term in the integrand. As a matter of fact, with suitable substitution, Equation A6 can

be reduced to a summation of Fourier transforms. However, since it is an infinite sum-

mation, it does not carry much advantage over the numerical Fourier transform except

for some special limit cases.

A.0.1 Gaussian input pulse

For a Gaussian input pulse, Equation A6 becomes as follows.
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h(t) = b
∫ ∞

−∞
e−(t−t′)2/2to2

ei(A+Bt′)Ai(−a − bt′)dt′ (A7)

The integral still cannot be performed analytically due to the Airy function. How-

ever, for some special limit cases, the integral can be performed approximately to predict

pulse evolution. One can consider a case of a very short Gaussian input pulse (to → 0)

with very large TOD (b → 0). Figure A1 shows an example of the short input Gaus-

sian pulse with an Airy function envelope widely spread in time due to very large TOD.

In this limit, the input Gaussian pulse act like a delta function and the maximum of

h(t) occurs around the maximum of Ai(−a − bt). Maximum of Ai(−a − bt) occurs at

Ai′(−s) = 0where s = 1.0188. Maximum occurring time is approximately given by as

follows.

t ≈ tm =
s − a

b
= (s − D2

2

(3D3)
4
3

)(3D3)
1
3 (A8)

The maximum intensity is can be estimated assuming the maximum intensity occurs

at tm.

Max(|h(t)|2) ≈ |h(tm)|2 = |b
∫ ∞

−∞
e−(t−t′)2/2to2

ei(A+Bt′)Ai(−a − bt′)dt′|2 (A9)

One can Taylor expand the Airy function term around t′ = tm. As the result, can be

expressed as a summation of Fourier transforms.

h(tm) = b
∞∑

n=0

Cn

∫ ∞

−∞
e−( s−a

b −t′)2/2to2
ei(A+Bt′)(t′ − s − a

b
)
n
dt′ (A10)

Equation A10 is integrable term by term and the algebraic expression of h(tm) in
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terms of to, D2 and D3 can be obtained. Obviously, more terms included in the sum-

mation gives a better estimation. To find an analytical relationship among parameters

approximately, the most simple case of n = 0 was considered. Integrand can be esti-

mated as follows.

e−( s−a
b −t′)2/2to2

Ai(−a − bt′) ≈ e−( s−a
b −t′)2/2to2

Ai(−s) (A11)

Substituting Equation A11 in Equation A10 becomes as follows.

h(tm) ≈ bAi(−s)
∫ ∞

−∞
e−( s−a

b −t′)2/2to2
ei(A+Bt′)dt′ =

√
2πbtoAi(−s)ei(a+ B

b (s−a))e−
B2 t0

2

2 (A12)

Maximum intensity is approximately given by following equation.

Max(|h(t)|2) ≈ 2πb2Ai2(−s)to
2e−B2to2

=
2πb2Ai2(−s)to

2e−D2
2to2/(9D3

2)

(3D3)
2
3

(A13)

One can find the relationship between D2 and D3 to maximize easily. The final result

is as follows.

D3 =
to√

3
D2 (A14)

In terms of GVD and TOD with relationship 1.665to = TFWHM for Gaussian, Equa-

tion A14 becomes as follows.

|TOD/GVD|
TFWHM

= k, k = 1.040 (A15)
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Figure A1: Input Gaussian pulse with Airy function envelop of Equation A6 to =

50 f s,TOD=1 × 107 f s3.

Equation A15 is the relationship of TFWHM, GVD and TOD to maximize the Gaus-

sian pulse peak power under nonzero GVD and nonzero TOD in a limit of TOD → ∞.

The Equation A15 describes that when a Gaussian pulse is evolved with large TOD,

adding GVD improves the peak power and the optimal ratio of TOD/GVD to maxi-

mize the peak power is roughly TFWHM. Since GVD and TOD operators commute in

the linear dispersive propagation, one can also describe the process as a highly linearly

chirped pulse peak power optimization with large TOD with ratio given by Equation

A15. Therefore, the limit condition TOD → ∞ is equivalent to GVD → ∞ when the

pulse peak power is maximized. Conjunction with to → 0 which is same as TFWHM → 0,

the limit condition can be defined as |GVD|
TFWHM

2 → ∞. |GVD|
TFWHM

2 is a convenient parameter since

the quantity is dimensionless and proportional to the z
LD

assuming β2 is constant where is

a dispersion length. Figure A3 shows that |TOD/GVD|
TFWHM

approaches 1.04 as |GVD|
TFWHM

2 increases

which is predicted by Equation A15
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A.0.2 Other pulse shapes

For a soliton with temporal profile hi(t) = S ech( t
to

), same treatment is applicable. For an

ideal similariton with parabolic power spectral profile of Hi(ω) =
√

c − dω2 with corre-

sponding temporal profile of hi(t) = 1
t

√ cπ
2 J1(

√ c
d t) where J1(x) is the Bessel function of

first kind while c and d are constants. Again same treatment to find the relationship of

Equation (A15) is applicable for an ideal similariton, too. The result is summarized in

Equation 9.4 and Table 9.1 in chapter 9.
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APPENDIX B

CPA OUTPUT RPP OPTIMIZATION ASYMPTOTIC BEHAVIOR (GVD, TOD

AND ΦNL)

Starting from Equation 9.3 in chapter 9, assuming TOD = 0 gives the equation as

follows.

h(t) =
1√
2π

∫ ∞

−∞
Hi(ω)e(i(D2ω

2))e(iΦNLI(ω))e(−iωt)dω (B1)

Assuming a Gaussian input of Hi(ω) = e−ω
2to2/2 and Taylor expansion of the nonlin-

ear phase term as eiΦNLe−ω2to2 ≈ eiΦNL(1−ω2to2) (i.e. ΦNL → ∞, the DC term and the first

order (second order of ω) term dominates), Equation B1 is reduced as follows.

h(t) =
1√
2π

∫ ∞

−∞
e−

ω2 to2
2 e(i(D2ω

2))e(iΦNL(1−ω2to2))e(−iωt)dω (B2)

The best pulse quality is achieved when GVD term cancels second order of nonlinear

phase term. Therefore, the pulse quality is best when D2 = ΦNLto
2. Substituting D2 =

ΦNLto
2 into Equation A17 gives an equation similar to Equation A15 but with some

modifications.

|TOD/GVD|
TFWHM

= k(1 − ΦNL

2(1.665)2

TFWHM
2

GVD
)

= k(1 − 1
2(1.665)2

1
u

) = k′ (B3)

u can be empirically found from the slope of Figure 9.5(a) or one can use the D2 =

ΦNLto
2 relation as ΦS N → ∞. Using relation gives k′ = 0.779 for a Gaussian input.
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It means that for a Gaussian input, |TOD/GVD|
TFWHM

value asymptotically approach 0.779 as

ΦS N → ∞. Figure 9.6(b) clearly shows the asymptotic behavior of |TOD/GVD|
TFWHM

for a

Gaussian pulse. By performing same analysis for a soliton, k′ = 1.093 is found. Again,

Figure 9.6(b) clearly demonstrates the case. The result is summarized in Table 9.2.

181


