Category Archives: Starting dynamics of Mamyshev oscillator

Starting Dynamics of Linear Mamyshev Oscillator

Starting dynamics of a linear-cavity femtosecond Mamyshev oscillator

Yi-Hao Chen, Pavel Sidorenko, Robert Thorne, Frank Wise “Starting dynamics of a linear-cavity femtosecond Mamyshev oscillator,” J. Opt. Soc. Am. B, 38, 743-748 (2021) 

This paper is chosen as Spotlight on Optics.

Mamyshev oscillator is a laser that not only generates strong pulses but is also capable of maintaining environmental stability. However, starting becomes a challenge due to the suppression of noise from continuous-wave (CW) lasing. Solutions to starting are to start with an external seed pulse, overlapped filter passbands to allow CW lasing, or self-seeding with a NPE starting arm described by Pavel et al. Here we proposed another solution to starting with pump modulation. It requires no mechanical flipping such as self-seeding and is demonstrated with full electronic control (Please watch the demonstration video here). Furthermore, it is demonstrated to reach a higher pulse energy by later increasing the filter separation. The laser is found to start reliably with pump modulation of a high repetition rate (>70 kHz) due to the emergence of a modulated mode-locked state. Besides, we found that damage from SBS constantly occurred in a linear cavity such that adding Faraday rotators is required.